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Second intermediate test
Topic: FRW models.

Suppose the luminosity distance is accurately measured using type Ia SNe,
with these results at five redshifts:

z dL (Mpc)
0.1 474.8± 9.3
0.5 2911± 58
0.8 5213± 92
1.0 6610± 150
1.5 11340± 240

(a) Assuming a flat ΛCDM model (ΩΛ > 0, Ωm + ΩΛ = 1, no radiation or
curvature), estimate the cosmological parameters H0 and Ωm (and their
uncertainty) from these measurements.

(b) Would an open Universe (without Λ) or a de Sitter Universe fit these data?

(c) For the best-fit parameters that you obtained, plot the scale factor versus
time as in the proposed exercise of lecture 17, adding a Milne model with
the same Hubble constant. Report in the plot, in some way you find
convenient, the uncertainty on the age of the universe. Would a globular
cluster of age 13.1± 0.5 Gyr be a problem for this model?

(d) Now the more difficult part: fix H0 to the best-fit value you obtained, and
do not restrict the analysis to flat universes. What region of the Ωm−ΩΛ

parameter space would be consistent with the above measurements? try
to get to the final answer, or describe a roadmap to obtain the result and
list the difficulties that you have met in the process. If you get an answer,
take a look at Fig. 2.11 of Vittorio textbook, and give a brief discussion
of the result.

Note: I constructed this exercise starting form Planck-like parameter values
(see the notes of Lecture 18), so you should obtain comparable results. However,
due to the known tension on the Hubble constant, type Ia SNe would give a
higher value of H0.
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Figure 1:

Solution

The provided dataset was produced by computing the luminosity distance
for a flat model with Ω0 = 0.315 and H0 = 67.4 km s−1 Mpc−1. The observed
luminosity distance dLo at the five (arbitrarily chosen) redshifts was then com-
puted as a Gaussian distributed variable with mean equal to the theoretical
value dLt and standard deviation equal to 2% of the mean. Errors σo were
computed as the dLt times a Gaussian variable with mean 0.02 and standard
deviation 0.002, to reproduce (in a qualitative way) the uncertainty on the stan-
dard deviation estimated from a data set. The χ2 = Σi(dLo,i − dLt)

2/σ2
o,i of

this distribution results 2.38.
This test requires numerical techniques for the computation of the integral

for the luminosity distance, and for the solution of the Friedmann equation for
non-flat cases. I have solved the problem using python, with numpy and scipy
libraries and matplotlib for graphics. Because the data reach z = 1.5, using the
phenomenological expression for dL based on the Taylor expansion in redshift,
that contains the acceleration parameter q0, would not give an accurate answer.

(a) In the flat model the expression of the scale factor is analytic, but the
luminosity distance must be numerically computed as:

dz(z) = (1 + z)

∫ t0

t(z)

cdt

a(t)

The result depends on the two parameters H0 and Ωm. In this simple case
it is possible to just sample the 2D parameter space in a regular grid. After
some iterations to fix the investigated region of parameter space, I used
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Figure 2:

Figure 3:
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Figure 4:

100× 100 parameter values in the range h ∈ [0.60, 0.75], Ω0 ∈ [0.15, 0.45].
I computed dLt for each parameter combination and compared it with the
data using the χ2 statistics defined above. I quantify this information
through the 68% and 95% confidence levels, that for 5 datapoints and 2
parameters (3 degrees of freedom) are given by χ2

68 = 3.36 and χ2
95 =

7.81. Figure 1 gives the result, in terms of contour plot of the χ2(H0,Ω0)
function at the two levels defined above. These are the confidence ellipses.
Their projection on the axes give the errorbars roughly corresponding to
1-σ and 2-σ. The orientation of the ellipses gives the degeneracy of the two
parameters: changes along the ellipses major axis will give little difference
on the goodness of fit. The resulting values are:

h = 0.68± 0.02

Ω0 = 0.30± 0.04

(1-σ errors). The figure reports also the true value used to generate the
data (red cross) and the best fit value (blue cross).

(b) A complete solution of the second question can be given after having fully
solved the fourth point. However, we know that the Hubble constant is
mostly constrained by the low-z data, while higher-z data constrain the
acceleration parameter, so we can have an indication of the consistency of
these cosmologies by plotting the luminosity distance for a Milne model
(Ωm = ΩΛ = 0, Ωk = 1) and a de Sitter model (ΩΛ = 1, Ωm = Ωk = 0)
using the same Hubble constant as its obtained best value. Luminosity
distances can be easily obtained analytically in this case. Figure 2 gives
the results, here we plot the ratio of dL with respect to that of the best
model, otherwise errorbars and differences would be hard to see. Both
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Milne and de Sitter models are clearly inconsistent with evidence at high
redshift; it is easy to check that changing the Hubble constant does not
help, and that Ωm > 0 in the open model does not help either.

(c) Figure 3 shows the resulting scale factor as a function of time. During the
calculation of the χ2 I stored, for each t, the smallest and the largest a(t)
values for models that have χ2 ≤ χ2

68. These are reported in the plot as
the shaded area. The width of this area at a = 0 gives the uncertainty in
the age of the Universe:

t0 = 13.9± 0.3

The plot reports also the age of the globular cluster, that is younger than
the age of the Universe with a statistical significance of a little more than
1σ. This means that there is no strong evidence of an age problem, but
there are models compatible with the luminosity distance data that would
be disfavoured by the measured globular cluster age. One could conclude
that adding the constraint from the age of the globular cluster could reduce
the uncertainty on the parameters.

(d) To obtain parameter constraints in the Ωm − ΩΛ plane one has to redo
the calculation performed for point (a), with very similar technical details.
However, there are two difficulties. First, the solution of the Friedmann
equation cannot be obtained analytically, so one has to resort to numer-
ical integration. Second, the universe is not flat here, so the luminosity
distance must be computed as follows:

dc =

∫ t0

t

cdt

a(t)

R0 =
c

H0

√
|Ωk

dL =
1

a
R0 sin

(
dc
R0

)
if Ωk < 0

dL =
1

a
R0 sinh

(
dc
R0

)
if Ωk > 0

In this case I used 100 × 100 parameter values in the range Ωm ∈ [0, 1.2]
and ΩΛ ∈ [0, 1.2]. The results are shown in Figure 4: due to the strong
degeneracy in the two parameters, the data now are compatible with a
much larger set of model parameters, and this shows how the starting
hypothesis (“prior”) on the parameter space can change parameter esti-
mation. Yet, we can confirm for this plot that the Milne universe and the
de Sitter universe are incompatible with data.

As a conclusion, the measurement of luminosity distance can tightly con-
strain parameters if the Universe is flat, but has low constraining power on the
curvature. Besides, the position of the acoustic peak of the CMB is able to
strongly constrain the curvature, so the joint use of CMB and SNe data is the
key to achieve accuracy.

As a matter of fact, CMB alone is able to give very good constraints to
cosmological parameters, while SNe data give incompatible values of H0. The
meaning of this “tension” is still under investigation.
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