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A very useful standard ruler is given by the sound horizon at recombina-
tion. Before recombination, baryons and photons are tightly coupled in a highly
ionised plasma, whose sound speed is cs = c/

√
3; this is easily obtained from

c2s = ∂p/∂ρ when pressure is dominated by photons. Sound waves propagat-
ing in this plasma up to recombination imprint a spatial scale rsh, the sound
horizon, that is visible as a feature both in the power spectrum of temperature
fluctuations of the CMB (the acoustic peaks, see the upper figure above) and in
the power spectrum of matter at later times (the Baryonic Acoustic Oscillations,
BAOs, see the lower figure above). After recombination this scale expands with
the scale factor.

The Planck satellite, whose cosmological parameters are given in slide 10 of
Lecture 18, gives a recombination redshift of zrec = 1060 and a sound horizon
comoving length of rsh = 147 Mpc.

(1) Consider a model that contains matter, radiation, cosmological constant
and curvature. Compute the comoving distance and the diameter distance
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as a function of redshift; numerical integration is the most obvious choice
for this step. To do this, show that the comoving distance dc(z) (or Llos(z))
of an object emitting light at redshift z can be written as:

dc(z) =

∫ t0

t(z)

cdt′

a(t′)
=

∫ z

0

cdz′

H(z′)

Recall that the second Friedmann equation can be written as:

H(z)2

H2
0

= Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + ΩK(1 + z)2

with ΩK = 1− Ωm − Ωr − ΩΛ.

Hint: It is a very good idea to test the numerical result against analytic
calculations for the cases in which these are available.

Describe the numerical approach adopted, and report the diameter dis-
tance (in Mpc) as a function of z, in the range z ∈ [0, 10], for Planck
cosmological parameters, assuming a flat Universe, and for the same pa-
rameters but adding ±0.1 to Ωm, so as to have non-flat models. Hint: the
parameters given in slide 10 of Lecture 18 assume indeed that the universe
is flat, with the exception of Ωk. We will not need parameter errorbars
here. Do not forget radiation, but fix the density parameters so as to keep
the universe flat.

(2) The sound horizon at recombination can be estimated as 1/
√

3 times the
particle horizon at the recombination redshift zrec = 1060, assumed to be
constant. Use the tools developed above to compute the sound horizon
for the Planck cosmological parameters. Report its physical (at zrec) and
comoving values in Mpc; how much does the latter differ from the 147 Mpc
comoving value found by Planck? This difference is mainly due to the fact
that the sound speed cs evolves in time, details are explained in Chapter
7 of the Vittorio textbook. Hint: you can correct for this difference by
rescaling the sound horizon (i.e. multiplying it by a constant) to be 147
Mpc for the Planck flat cosmology.

(3) Suppose astronomers report that, at redshift z = 0.3, the BAO scale
rsh subtends an angle of θ = 0.1166 ± 0.0023 rad. Keeping H0 and Ωr

fixed to their Planck values, what region of the Ωm−ΩΛ parameter space
is consistent with this measurement at 1 and 2 σ? Look carefully at
your result, and comment it, in the light of our need to get the tightest
constraints on cosmological parameters. Hint: do not bother with negative
values of ΩΛ, but do not restrict either to flat universes.

(4) The rsh scale is best constrained by CMB observations. Suppose that it
subtends an angle of θ∗ = 0.01041 ± 0.00031 rad (it’s actual errorbar is
100 times smaller than this!). What region of the Ωm − ΩΛ parameter
space is consistent with this measurement at 1 and 2 σ? Look carefully
at your result and argue what parameter is most accurately constrained
by this observation.
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Solution

(1) The numerical integration of the comoving distance amounts to comput-
ing a rather standard integral of a relatively well-behaved function (the
integrand diverges at infinity in a way that is easy to handle), it can be
easily done by any integration library. A good practice is to use directly
the complete H(z) as given above, but checking results against known
analytic solutions, starting from the simple Einstein-de Sitter Universe.

The angular diameter distance is readily computed from the comoving dis-
tance. CallingR0 = c/H

√
|ΩK |, we have that the dD = dc/(1+z) for a flat

universe, while dD = R0 sin(dc/R0)/(1 + z) or dD = R0 sinh(dc/R0)/(1 +
z) for a closed or open universe. To have an exactly flat Planck cosmology,
the three parameters Ωm, ΩΛ and Ωr must add to 1, but it is clear from
the numbers given in the slides that the first two add to 1 while the third
is simply smaller than the other parameters’ errorbars. I have solved the
issue by subtracting the value of Ωr to the ΩΛ value reported in the table.

The three requested diameter distances are reported below.

(2) The comoving sound horizon at recombination can be estimated solving a
very similar integral as the comoving distance:

dsh,c(zrec) =
1√
3

∫ ∞

zrec

cdz′

H(z′)
= 166 Mpc

(the numerical values refers to what I have obtained for flat Planck cos-
mology) while the physical (proper) value at recombination is

dsh,p(zrec) = dsh,c(zrec)/(1 + zrec) = 0.156 Mpc

The comoving value of 166 Mpc is larger than the 147 Mpc value quoted
in the Planck paper by a factor 1.130. The reason why our estimation is
approximated is explained above; if we keep this approximation we bias
the parameter values obtained by comparing our inaccuate theory with
the observation. A better (quick and dirty) solution can be obtained by

3



multiplying our estimate of the sound horizon, for all parameter values,
by the inverse of 1.130, so as to obtain 147 Mpc for the Planck cosmology.
Of course, following the approach of the Vittorio textbook would be a
much better option, but it would not allow us to solve this problem in
time.

(3) The simplest way to sample a 2D parameter space is to compute the
theoretical expectation on a grid of parameter values. I used a grid with
Ωm ∈ [0, 1] and ΩΛ ∈ [0, 1.2], with 100 values per side for a total of 10000
evaluations; I avoided negative values of Λ that are of little interest to us.
I computed the χ2-like quantity (θpredicted − θobserved)2/σ2

observed, where
θpredicted = dsh,p(Ωm,ΩΛ)/dD(zrec) and plotted the contours where this
quantity has values 1 and 22 = 4. The computation takes less than a
minute on my laptop. The result is given below, the blue and yellow
curves refer to 1− σ and 2− σ. The black line gives the values relative to
a flat universe (Ωm −ΩΛ = 1, ΩK = 0), while the red cross gives the true
cosmology, that lies well inside the allowed region.

Two things are evident from this plot. First, there is a degeneracy be-
tween the two parameters, meaning that several different combinations of
Ωm and ΩΛ give the same prediction. It is clear that this observation alone
cannot constrain the parameters, but if we combined it with another ob-
servation that has a different degeneracy, like the Hubble diagram of type
Ia SNe, we could combine the two to have a very good constraint. The
other evident thing is that the Ωm parameter is constrained better than
ΩΛ.

(4) Computing the parameter values compatible with the extension of the
first acoustic peak in the CMB temperature fluctuations requires the same
computation as above, one has only to change the redshift and the angle
value. The result is however different:
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Clearly the degeneracy is almost aligned with the lines of constant ΩK ,
so one can argue that this observation is able to constrain the curvature
parameter ΩK much tighter than the others. This is correct even if ΩK is
not a free parameter here but depends on the others; one could decide for
example to use it as a free parameter in place of ΩΛ. As a matter of fact,
the position of the first acoustic peak gives the clearest evidence that we
live in a flat universe.
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