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According to Olber’s paradox, if the universe is infinite and eternal (and
transparent) the night sky should be as bright as the surface of the sun (that
is an average star). Indeed, every line of sight will sooner or later touch the
surface of a star, and surface brightness does not depend on distance.

(1) Suppose now that the universe is static and eternal, filled with galaxies
like the Milky Way, with number density of 10−2 Mpc−3, each containing 1011

stars like the sun (R� = 696000 km) in a disc of radius 10 kpc and negligible
width. Assuming that the orientation of such galaxies is random, compute the
average length of a photon path first from us to a galaxy, then from us to the
surface of a star, and compare both lengths to the horizon size c/H. This should
demonstrate that the presence of a cosmological horizon is more than sufficient
to solve Olber’s paradox.

If you are confused by orientations, assume that all galaxies are face-on, the
order of magnitude will be the same. But averaging over orientations is simple.

Now let’s compute the number of galaxies one expects to see on the sky in an
expanding Universe. For this exercise we fix the Hubble constant to the fiducial
value of H = 70 km s−1 Mpc−1. We consider two cosmological models, an open
matter-dominated universe with Ωm = 0.3 and a flat universe with matter and
a cosmological constant, again with Ωm = 0.3.

(2) As a first step, let’s assume that all galaxies were born at redshift z = 5,
and all of them are visible. We want to compute the number surface density of
galaxies, i.e. how many galaxies per square degree are visible on the sky, and
what is the fraction of the sky that is covered by a galaxy. Let’s proceed as
follows:

(a) Compute the comoving distance dc(z); recall that the integral can be
reformulated as: ∫ t0

t

cdt

a(t)
=

∫ z

0

cdz

H(z)

Compute the angular diameter distance dd(z), and plot both distances as
a function of z for the two fiducial cosmologies defined above. Show z
from 0 to 5.

(b) Work out the comoving volume of a shell at redshift z and width dz,
dVc = dVc/dz × dz.

(c) Then compute the number of galaxies visible in one square degree of sky
as the integral in z of the number visible at each redshift bin, with z from
0 to 5, and report the values for the two models.
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(d) For each redshift bin, compute the fraction of sky covered by galaxies, and
integrate it in redshift for the two models. Do we expect that all galaxy
images will overlap?

(3) This point is reserved to those that have smoothly gone through the
previous calculations. We have made two strong assumptions, that all galaxies
are the same and that they are all visible. To relax these assumptions we need
to assume a luminosity function for the galaxies. We introduce here a couple of
astrophysical concepts.

Apparent magnitude: it quantifies the measured flux f of a sky source,
as

m = −2.5 log10 f + const

. In this test we do not need to know the constant.
Absolute magnitude: the absolute magnitude M of a sky object is defined

as the apparent magnitude it would have if its luminosity distance were 10 pc.
One can then relate the apparent and absolute magnitudes as:

M −m = −5 log10 dL − 25

where the luminosity distance is measured in Mpc.1

As for the luminosity function assume that galaxy luminosities are randomly
distributed in absolute magnitude, with a flat distribution from a very faint
magnitude to M = −20.5. The number density of galaxies in the range from
M = −19.5 to M = −20.5 is Φ∗ = 10−2 Mpc−3. Suppose then that we observe
down to an apparent magnitude m, that corresponds to an absolute magnitude
M(z) at a given z: it is easy to see that the number density of visible galaxies
is simply Φ∗(M(z) + 20.5) if M(z) > −20.5, 0 otherwise.

Compute now the “galaxy number counts”, the number of galaxies visible
on the sky as a function of their magnitude.

(a) First compute the luminosity distance dL of the two models, and show
them along with the other distances.

(b) Then compute and show, as a function of apparent magnitude, what is
the highest redshift at which a galaxy of absolute magnitude M∗ can be
seen. Number counts will have no contribution from higher redshifts.

(c) Finally compute, at each redshift, the number of galaxies that can be seen
at a given apparent magnitude, and report the two curves of the number
of galaxies as a function of magnitude, in the apparent magnitude range
from 12 to 30.

(4) A question for all groups: would this method of number counts be useful
to constrain cosmological parameters? Try to elaborate on this, identifying the
assumptions that could be wrong here. If you have spare time try to experiment
with different parameters to see how number counts change. The bravest may
also try to use a more realistic Schechter luminosity function in place of our
idealized one.

1The right hand term of this equation is known as (minus) the distance modulus µ =
5 log10 dL + 25.
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Solution

(1) We compute the average length of the line of sight to a galaxy as a mean
free path,

lG =
1

nGσG

where σG is the galaxy cross section and nG = 10−2 Mpc−3. If the angle
θ between the normal to the galaxy disc and the line of sight is randomly
distributed between −π/2 and π/2, the average value of cos θ is 2/π, so the
average cross section of a galaxy is σG = 2R2

G (RG = 0.01 Mpc). The resulting
length is:

lG =
1

2R2
GnG

= 500, 000 Mpc

.
This number alone is much larger than the horizon size c/H0 = 4290 Mpc, and
this implies that most sightline will not intersect a galaxy in the presence of
such a horizon. However, the cross section of stars in a galaxy can be computed
as the cross section of the galaxy multiplied by N?(R�/RG)2 ∼ 5× 10−13, so to
obtain the line of sight to the nearest stars lG must be divided by this number,
obtaining:

l? =
lG

N?(R�/RG)2
' 1018Mpc

This huge number gives an idea on how wide the Universe is with respect to the
astrophysical object it contains.

(2a) The next step is to compute distances, starting from the comoving
distance. The simplest thing is to numerically integrate c/H(z) in z from z = 0
to 5, where

H(z) = H0

√
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ = H0E(z)

Figure 1 reports the comoving and angular diameter distances for the two fidu-
cial cosmologies.

(2b) For the flat model, the comoving volume Vc = 4πdc(z)
3/3 can be easily

differentiated, to obtain dVc = 4πd2
cdz c/H(z). Then, taking into account that

angles are conserved during expansion, and that one square degree corresponds
to (π/180)2 steradians, the volume subtended by a square degree is:

dVc
dz

=
( π

180

)2

dc(z)
2 c

H(z)

In the open model, calling R0 = c/H0

√
Ωk, the universe curvature radius

and χ = dc/R0, the volume is given by V (χ) = 2πR3
0(sinh(2χ)/2 − χ). Dif-

ferentiating this expression with respect to z, and multiplying the result by
(π/180)2/4π to pass from full sky to one square degree, we have:

dVc
dz

=
1

2

( π

180

)2

R3
0

√
Ωk

E(z)

(
cosh 2

dc
R0
− 1

)
(2c) Calling again nG the galaxy density, the number of galaxies per square

degree is easily integrated:

N =

∫ 5

0

nG
dVc(z)

dz
dz

3



Figure 1:

The result is N = 3.55 × 105 galaxies per square degree for the open model,
N = 4.78× 105 for the flat model with cosmological constant.

(2d) The solid angle ΩG covered by galaxies, with random orientations, is:

ΩG =

∫ 5

0

nG
dVc(z)

dz
2

(
RG

dd(z)

)2

dz

This results in ΩG = 3.35 × 10−5 and 4.11 × 10−5 steradians for the open and
flat models, corresponding to fractions of 11.0% and 13.5% of one square degree.
So galaxies in these models cover a fair fraction of the sky, something that was
not apparent in the calculation before. One can try to estrapolate the result to
even higher redshift, say to recombination (z = 1100) that defines the visible
horizon; you will notice that the volume to the visible horizon is much larger
than that to z = 5 (by a factor of 13 for open and 5 for flat cosmologies), so if
one assumes that galaxies are present at recombination the number of galaxies
will grow by the same factor, but the angle covered by galaxies will explode,
going to values much larger than one. The reason why this happens is that we
are placing galaxies of a 10 kpc proper radius on a surface at fixed distance
that is smaller and smaller when we go to higher and higher redshift, and so
at smaller and smaller scale factors. The reason why the Universe expansion
solves Olber’s paradox is that galaxies, and then stars, were born gradually in
time, with a star-formation rate peaking at redshift z ∼ 2; only ∼ 10% of stars
were born before z = 5.

(3a) The luminosity distance is reported in Figure 2, with the other curves.
Luminosity distances are much larger than the other distances, so showing all
of them together would have not worked if not using a log scale on the y axis.
Notice how the luminosity distance at z ∼ 1 is larger for the model with cosmo-
logical constant, see our discussion of the evidence of an accelerating universe.
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Figure 2:

(3b) The highest luminosity distance at which a galaxy of absolute magni-
tude M∗ = −20.5 is visible is dl = 10.(m−M∗)/5−5 Mpc, the zmax(m) redshift
can be found by numerically inverting the dL(z) function. The result is given
in Figure 3 for the two fiducial models. At magnitude m ' 26.6 M∗, galaxies
are visible down to redshift 5.

(3c) The number of galaxies is obtained by solving this integral:

N(m) =

∫ zmax(m)

0

Φ∗(m− 5 log10 dl(z)− 25−M∗)
dVc(z)

dz
dz

The result is shown in Figure 4, while Figure 5 shows the same counts for a
larger number of open and flat cosmologies. At m < 20 we are seeing only the
local universe (z < 1), and number counts do not show differences for the two
fiducial models. Conversely, deeper magnitudes allow us to probe the distant
universe, and number counts starts to diverge, giving sizeable differences (Figure
5) that could in principle be used to constrain cosmological parameters.

(4) Number counts are very convenient from the point of view of observa-
tional time, because they just require an image of the sky in a single observa-
tional band. They do depend on cosmology, so they could in principle be used
to constrain the cosmological parameters. However, several complications make
this use impossible in practice. Galaxies do evolve in time, and their evolution is
complicated and not understood in detail. Moreover, their evolution is different
when galaxies are observed at different wavelengths. If their luminosity func-
tion were known in detail, it would be possible to compute their number density
as a function of cosmology; but measuring the luminosity function requires a
cosmological model to compute luminosities from fluxes. Another complication
lies in the fact that the galaxy spectra are not flat at all, and redshift makes us
see in a given observational band different “rest-frame” wavelengths, giving an
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Figure 3:

Figure 4:
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Figure 5:

apparent evolution of luminosities that depends on galaxy type.
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