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Third intermediate test
Topic: early universe.

Problem 1. This is an extended version of the proposed problem of lecture
21.

Consider a flat model with H0 = 67.4 km s−1, and ignore the contribution
of ΩΛ. Starting from the Big Bang, the scale factor evolves as follows: (1) from
t = 0 to t = ti = 10−35 s it evolves like a radiation-dominated universe, (2) at ti
an exponential (de Sitter) inflationary phase starts with Hubble parameter Hi,
lasting for Ne e-folds up to t = tf (so that H(tf − ti) = Ne), (3) from tf to teq,
the time of equivalence, it evolves again like a radiation-dominated universe,
(4) from teq to the present time t0 it evolves like a matter dominated universe.
We know that the equivalence redshift is zeq = 3400, and compute t0 from the
Hubble constant H0 for a matter-dominated universe (it will not be correct, but
it is a small difference for our purposes). In this evolution the scale factor a(t)
and the Hubble parameter H(t) remain continuous.

1. Find a (piecewise) analytic description of the scale factor a(t) for the whole
evolution of this universe.

2. Compute the dimension of the Hubble comoving horizon dcH = c/ȧ (in
units of Mpc) at t = ti and at t = t0, and find the minimum number
Ne,min of e-folds needed to (barely) solve the horizon problem.

3. Assume now that inflation lasted Ne = Ne,min + 1 e-foldings. Find a way
to visualize in a (rigorous) plot the scale factor and the comoving Hubble
horizon for the whole time span of the universe. Report the times that
limit the four cosmic eras in all plots. In the plot of the Hubble comoving
horizon, report a scale that is seen on the CMB outside the horizon at
recombination (justify the choice in a quantitative way).

4. For the same case, can you draw an accurate conformal diagram of this
universe, marking the position of the visible horizon (at z = 1100)?

5. Compute the comoving size of the particle horizon and of the visible hori-
zon, in Mpc, for this model, and compare them.

6. Qualitatively, what would happen to these plots if inflation lasted 10 more
e-folds?

Note: recall that, for the second radiative era and the matter-dominated era,
the extrapolation of the scale factor back in time, before the starting time of the
era itself, does not go to 0 for t = 0. So the introduction of a new era implies
a new time parameter, as in the solution of Proposed problem 21.
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Problem 2.

Neutrino decoupling, that causes the freezing of the neutron-to-proton ratio
nn/np, takes place when the timescale for weak interactions τw is equal to the
cosmic time t. Cosmic time, at fixed temperature T , depends on the number
of particles through g?. Suppose that the number of neutrino types is Nν , not
necessarily 3; using the approach given in the lecture notes, calculate how the
temperature at decoupling Tν,dec depends on Nν .

Note: the density at the denominator of τ is supposed to be the density of
electron pairs. You will not obtain for Nν = 3 the 900 keV value quoted in the
notes and in Bonometto textbook; feel free to rescale the number you obtain to
900 keV, we are concerned on relative differences as a function of Nν .

Use this information to compute the dependency of nn/np on Nν , and then
estimate how much the He abundance would change if we had 2 or 4 neutrinos.
Can you identify the approximated steps one should work on to obtain more
reliable numbers?
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Solution of problem 1

Please read first the solution of the proposed problem 21.

1. The scale factor evolves in four phases:

a1(t) = ai

(
t

ti

)1/2

a2(t) = aie
H(t−ti)

a3(t) = af

(
t− t3
tf − t3

)1/2

a4(t) = aeq

(
t− t4
teq − t4

)2/3

Here we have supposed that the extrapolations of a(t) in phases 3 and 4
go to zero at times t3 and t4. The known data are H0, ti, aeq = 1/(1+zeq)
and of course a0 = a(t0) = 1. We require that the four functions a(t) and
H(t) = ȧ/a are continuous at times ti, tf and teq, we set a(t0) = 0 and
H(t0) = H0, and we exploit the fact that teq � tf and t0 � teq. We then
obtain, as a function of ai and Ne:

af = aie
Ne

tf = (2Ne + 1)ti

t3 = 2Neti

teq = ti

(
aeq

aieNe

)2

t4 = −1

3
teq

t0 =
2

3H0

The (known) value for aeq is obtained from a3(teq) and a4(teq) (assuming
a4(t0) = 1), and this allows to find ai:

ai = e−Nea1/4
eq

(
4ti
3t0

)1/2

2. The comoving Hubble horizon for the four phases is:

dcH1 =
2cti
ai

(
t

ti

)1/2

dcH2 =
2cti
ai

e−H(t−ti)

dcH3 =
2cti
ai

e−Ne

(
a(t)

af

)
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dcH4 =
2cti
ai

e−Ne

(
aeq

af

)(
a(t)

aeq

)1/2

As discussed in the lecture notes, the condition dcH(t = t0) = dcHi =
2cti/ai gives:

eNe =
aeq

af

(
1

aeq

)1/2

Using for af the expression given above, one obtains:

Ne,min =
1

4
ln aeq +

1

2
ln

3t0
4ti

= 58.2

For this Ne the size of the comoving Hubble horizon at the end of the four
phases is: dcH1 = 4450 Mpc, dcH2 = 2.24 × 10−22 Mpc, dcH3 = 76 Mpc,
dcH0 = 4450 Mpc.

3. For Ne = Ne,min + 1 the size of the comoving Hubble horizon at the end
of the beginning of inflation becomes dcH1 = 12100 Mpc, the other values
remain unchanged.

The plots are shown in the first figure; in this case a log-log plot is clearly
necessary. Here the recombination time trec is obtained by computing the
time at which a4(trec) = arec = 1/(1 + zrec); in this case we do not assume
that trec � teq, obtaining trec = 7.98× 1012 s = 2.5× 105 yr. The horizon
at the equivalence is 134 Mpc, we report in the plot a scale 10 times larger,
still below the horizon value today.

4. Figure 2 shows the conformal diagram in this case. For Ne = Ne,min + 1
recombination is clearly visible. The contributions to the conformal time
η are:

∆η1 =
2cti
ai

= 12100 Mpc

∆η2 =
2cti
ai

(1− e−Ne ' 2cti
ai

= 12100 Mpc

∆η3 =
2cti
ai

e−Ne

(
t

ti

)1/2

= 76 Mpc

∆η4 ' 3ct0 = 8900 Mpc

The third contribution is negligible, but 3ct0 = 8900 Mpc is not very much
smaller than the first and second contributions, given that the horizon
problem is barely solved. The visible horizon is, within the resolution of
the plot, at 3ct0.

5. The comoving particle horizon can be simply computed by summing all
the contributions to η. It results of 33200 Mpc, larger than 3ct0 but only
by a factor of order unity.

6. If we add 10 more e-foldings, the particle horizon at t0 results of 5.3× 108

Mpc, while the comoving Hubble horizon at the beginning of inflation is
2.6×108 Mpc. The plots of the scale factor and comoving Hubble horizon
can be done by further extending the already wide range of values in the
y-axis, but the visible horizon disappears from the conformal diagram.
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Figure 1:

5



Figure 2:

Solution of problem 2

In the following we call TMeV the temperature of the thermal soup in units of
MeV. To compute the timescale for interaction of one electron and one neutrino
we use the electron number density (Ns = 2):

ne =
ζ(3)

π2

3

2

(
kBT

h̄c

)3

= ne,MeV T
3
MeV

where ne,MeV = 2.35× 1031 cm−3. Then:

τw =
1

σwnec
= τMeV T

−5
MeV

where τMeV = 0.54 s. To compute the age of the universe we need the total
mass/energy density:

ρ =
1

c2
π230g?

(kBT )4

(h̄c)3

Then:

t =

√
90c2(h̄c)3

32π3G(1 MeV)4
g? −1/2 T−2

MeV = tMeV g
? −1/2 T−2

MeV

where tMeV = 2.4 s. The equality τ = t leads to:

TMeV =

(
τMeV

tMeV

)1/3

g? 1/6 = 0.9 MeV

(
g?

10.75

)1/6

The neutron-to-baryon fraction at freezing time is:

Xn,fr =
1

1 + e1.3/TMeV
= 0.19 if Nν = 3

The Helium fraction will be roughly twice this fraction, if most neutrons end
up in 4He nuclei. This will be lowered from 0.38 to the observed value by
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the number of neutrons lost by beta decay before the opening of deuterium
bottleneck. But the fraction of lost baryons will be the same if the time of
opening of deuterium bottleneck does not depend on Nν . The relative increase
or decrease of neutrons when Nν changes can thus be computed on the basis of
Xn,fr.

Repeating the computation for Nν = 2 or 4 we obtain respectively a decrease
of 3.5% for 2 neutrinos and an increase of 2.9% for 4 neutrinos.

This simplistic approach gives a slight underestimate of the true variation
of Y , that amounts to ∼ 5%; one of the reasons for this underestimate is that
the opening of the deuterium bottleneck depends on the number of neutrinos,
as discussed by Bonometto textbook (Sec. VI, page 168).
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