Cosmology 1

2022/2023 Prof. Pierluigi Monaco

Third intermediate test

Topic: early Universe. Deadline: June 15, 11:00.

Consider the existence of $\mathcal{N}_{\nu} = 2$, 3 and 4 families of elementary particles, and thus of neutrino pairs. Compute, for each of these values, the following quantities.

- (i) The temperature (in GeV) of neutrino decoupling, obtained by assuming $\tau_w = t(T)$, where τ_w is the time between two consecutive neutrino-electron scatterings and t is the age of the Universe, that depends on the temperature of the thermal soup through the energy density.
- (ii) The value of the neutron-to-proton ratios at freezing and the resulting value of the Helium weight ratio Y.
- (iii) The values of the equivalence redshift.

Report the equations used and the numbers obtained in max one page.

Solution

The temperature of neutrino decoupling $T_{\nu,\text{dec}}$ can be computed by equating the time τ between two consecutive scatterings of a neutrino with an electron to the age of the Universe t:

$$\tau = \frac{1}{\sigma_w n_e c} \qquad t = \sqrt{\frac{3c^2}{32\pi G u}}$$

The dependence on \mathcal{N}_{ν} comes through

$$u = \frac{1}{2}g^{\star}a_rT^4$$

where $g^{\star} = 5.5 + 7/4 \mathcal{N}_{\nu}$, while the electron density

$$n_e = \frac{15\zeta(3)}{\pi^4} \frac{3}{2} \frac{a_r T^3}{k_b}$$

does not depend on \mathcal{N}_{ν} .

The resulting ratio of neutron to proton abundances is

$$\frac{n_n}{n_p} = \exp\left(-\frac{1.3 \text{ MeV}}{k_b T_{\nu,\text{dec}}}\right)$$

where we have set to 1 the ratio of neutron and proton masses. If all neutrons go to ${}^{4}He$ its mass ratio results

$$Y = \frac{2}{1 + n_p/n_n}$$

Finally, the equivalence redshift can be computed as

$$1 + z_{\rm eq} = \frac{\rho_{c0}\Omega_m}{(1 + 0.224\mathcal{N}_{\nu})\rho_{\gamma 0}}$$

where $\rho_{c0} = 3H_0^2/8\pi G$ and $\rho_{\gamma 0}^2 = a_r T_{\gamma 0}^4$ with $T_{\gamma 0} = 2.73$ K. This depends on Ω_m and h, we assume $\Omega_m = 0.315$ and h = 0.674. The results are reported in this table.

$\mathcal{N}_{ u}$	g^{\star}	$T_{\nu,\text{dec}}$ (keV)	n_n/n_p	Y	$z_{ m eq}$
2	9.0	875	0.226	0.369	3952
3	10.75	901	0.236	0.382	3418
4	12.5	924	0.245	0.393	3011