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Inflation can solve the horizon problem if the comoving Hubble horizon at
the beginning of inflation is larger than its value today. The calculation of the
number of e-folds performed in class assumed that inflation takes place at an
energy of 1015 GeV. However, we do not know at what energy inflation took
place.

(1) Argue and motivate what is the energy range (in GeV) at which we can
reasonably expect inflation to take place.

(2) Recompute the minimal number of e-folds Nmin necessary for inflation to
solve the horizon problem as a function of energy scale; you can ignore
the evolution of g⋆ in these order-of-magniture calculations and assume
zeq = 3400. Comment the result.

(3) Compute the comoving size of the visible Universe (in Mpc), and its cor-
responding physical size at the beginning and end of inflation (this time
in cm), again as a function of the energy scale of inflation, assuming that
it lasted for two e-folds more than the minimum: Ne = Nmin +2. For the
visible size of the Universe, numerically compute the comoving distance
at redshift zrec = 1100 assuming a flat ΛCDM model with Ωm = 0.31,
ΩΛ = 0.69 and h = 0.67 (H0 = 100h km s−1 Mpc−1).

(4) Compute the total energy and equivalent mass (in solar masses) contained
in a sphere of radius equal to the comoving distance of the visible Universe,
at the beginning and at the end of inflation as a function of its energy scale.
Report the result in solar masses. This is a bit tricky conceptually: you
can compare these numbers to the total mass of the observable Universe,
but remember that before equivalence the energy budget is dominated by
radiation. Comment what you have obtained, and feel free to speculate.

(5) Argue what happens to entropy along the process (remember that most
visible particles are created by the decay of the inflaton at the end of
inflation).
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Solution

(1) We can set the highest energy value at which inflation can take place at
the Planck energy; indeed, the breaking of quantum gravity can trigger
inflation. Inflation shuold take place before nucleosynthesis, and the last
SSB known to us takes place at the EW breaking; indeed, one considered
possibility is that the Higgs field drives inflation. So it is plausibe to set
the largest possible energy range from Planck energy, 1019 GeV, to EW
energy scale, 100 GeV.

(2) In class we learned that the minimal number of e-folds can be computed
as:

Nmin > ln

(√
aeq

af

)
where aeq = 1/(1+zeq) is the scale factor at matter-radiation equivalence.
The scale factor at the end of inflation can be scaled to the temperature
of inflation Tinfl = Einfl/kB as

af =
Tcmb

Tinfl

where Tcmb = 2.73 K and we have neglected for simplicity the evolution
of the number of degrees of freedom g⋆. It then results that

Nmin ∝ log Tinfl

with inflation at lower energy requiring a lower number of e-folds to solve
the horizon problem. This is easy to understand, as the growth of the
comoving Hubble horizon from the end of inflation to today is smaller if
inflation ends later. We report here a plot of the number of e-folds with
respect to the (Log) energy scale, in GeV. The dotted lines report the
values for 1015 GeV discussed in the class (Nmin = 59.6).
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(3) The comoving distance to the visible horizon can be computed using the
machinery developed for the Second Test:

dvis =

∫ zrec

0

c dz√
Ωm(1 + z)3 +ΩΛ

= 14100 Mpc

Its physical size at the end of inflation is:

df = afdvis =
Tcmb

Tinfl
dvis

while at the beginning of inflation:

di = aidvis = df/ exp(Ne)

where Ne = Nmin+2. These two distances are reported in the plot below,
in cm. For Tinfl = 1015 GeV we have that a 2× 10−26 cm scale is inflated
to 10.4 cm.1

(4) The total mass contained today (at t = t0) within the horizon is:

Mh,m = ρcΩm
4π

3
d3vis = 0.45× 1024 M⊙

This mass is constant, as long as the particles (dark matter and baryons)
exist. However, the total energy budget is dominated by dark energy,
that has an equivalent mass of Mh,Λ = 1.01 × 1024 M⊙, for a total of
1.46 × 1024 M⊙. CMB photons contribute little equivalent mass, Mh,r =
8.12×1019 M⊙, but when we go to higher redshift this contribution grows
like (1 + z), while dark energy dies like (1 + z)−3. So the equivalent mass
at the end of inflation can be recovered as:

Mf = Mh,r/af

1This is a bit larger than what reported in the notes due to different approximations; here
af = 2.4× 10−28 and the visible horizon is 14.1 Gpc, larger than ct0 = 4.2 Gpc.
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During inflation the energy density is constant, so (as for dark energy) the
initial equivalent mass within the horizon is obtained by rescaling it by
the cube of the ratio of scale factors:

Mi = Mf

(
ai
af

)3

= Mf exp(−3Ne)

The figure below reports these masses, together with the total mass (given
by matter) of the visible Universe as a reference.

Clearly the total energy in a comoving volume is not a constant during
the Universe evolution, growing if w < 0 and decreasing if w > 0. If
inflation took place at 1015 GeV, the visual horizon started from ∼ 5 g
and was inflated to 4× 1047 M⊙. Less drastic growth is obtained at lower
energies, but the initial mass always keeps below the solar mass. This is a
possible hint for speculating about the initial conditions that gave rise to
inflation, where what we need is a macroscopic but small amount of matter
compressed to huge density and at huge energy, and fastly expanding.

(5) Approximating g⋆ to a constant, for a radiative universe the entropy in a
comoving volume is proportional to the number of particles in it. Inflation
should be driven by a phase transition, and while it happens the transition
is far from equilibrium; also, if p = −u, then σ = (u+ p)/T goes to zero,
and this shows that the entropy formulation found in Lecture 15, based
on a radiative universe, does not apply during inflation. Associating a
temperature to the expanding vacuum is not trivial, one may associate
it to entropy thus predicting a drastic decrease of temperature. However,
reheating following the end of inflation leads to the creation of all particles
(as in the final stage of a phase transition happening out of equilibrium).
We can assume that reheating marks the return to a radiative universe in
thermodynamical equilibrium.

To deepen the subject, let’s discuss about the number of particles in the
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comoving observable Universe and assume that it does not vary during in-
flation (all pre-inflation particles are stable). One can compute the number
of particles at the beginning of inflation within the horizon (g⋆ = 2):

Ni = ni
4π

3
(aidvis)

3 =
40ζ(3)

π3

arT
3
infl

kB
(aidvis)

3

For Tinfl = 1015 GeV this results as large as ∼ 108 particles, but it should
be compared to its value at the end of inflation, that is boosted by a factor
exp(3(Ne + 2)) ∼ 1080, and to the number of photons within the visible
horizon. If g⋆ does not change, so that T ∝ a−3, it is easy to see that
the dependences of the scale factor in (advis)

3 and in T 3 cancel, so the
number of relativistic particles is a constant from tf to t0 and is:

Nγ =
40ζ(3)

π3

arT
3
cmb

kB
d3vis ∼ 1089

Even when comparing this number with the number of baryons within the
horizon, Nb = ηNγ ∼ 1080, the number of pre-inflation particles is tiny,
testifying that entropy is created by reheating (and that any monopole
problem is solved).

The figure below reports the number of pre-inflation particles within the
horizon as a function of energy scale of inflation. The higher the energy
the more drastic is the increase of entropy at the end of inflation. While a
Planck-scale inflation makes it unlikely to have even a single pre-inflation
particle within the horizon, an EW-scale inflation makes ∼ 1047 particles
survive the extreme dilution, that is however limited to “only” ∼ 30 e-
folds. This is yet smaller by 33 orders of magnitude than the baryon
fraction.
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