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The comoving Hubble horizon at matter-radiation equality leaves an observ-
able imprint on the matter power spectrum. This happens because fluctuations
on smaller scales enter the horizon during the radiation-dominated era and
cannot grow till equality, while larger scales enter the horizon in the matter-
dominated era and suffer no damping. At the same time, this comoving scale
depends on the number of relativistic species present in the early Universe, in
particular on the number of neutrinos and on any “dark radiation” that may be
present in the dark sector.

We will again assume a flat ΛCDM model with Ωm = 0.319, and H0 = 67
km/s/Mpc, and assume that flatness is achieved by having ΩΛ = 1− Ωm − Ωr

(though the ΩΛ term is negligible at equality). We will call Nν the number of
neutrino families.

(1) Compute the size of the comoving Hubble horizon deq at equality as a
function of Nν , and quantify it for Nν = 2, 3 and 4, in Mpc and h−1 Mpc.

(2) Recast this in terms of the wavenumber keq = 1/deq, in h Mpc−1. How
accurate should a measurement of keq be to enable us to measure the
number of neutrino families?

Let’s now assume Nν = 3. Neutrinos have a small mass, so they belong to
the dark matter sector and at low redshift they contribute to the matter budget.

(3) Suppose that one of the neutrinos is much more massive than the others,
what should its mass be to explain dark matter?

(4) Compute Ων today if the mass of the most massive neutrino is mν = 0.1
eV.

(5) At what time does this neutrino become non-relativistic?
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Solution

(1) To compute the comoving Hubble horizon at equality we need the second
Friedmann equation,

H2 = H2
0

(
Ωm(1 + z)3 +Ωr(1 + z)4 +ΩΛ

)
where the photon density is

Ωγ =
arT

4
γ0

c2ρc0
= 5.56× 10−5

(ρc0 is the critical density today) and

Ωr = Ωγ(1 + 0.227Nν) = 9.34× 10−5

where 0.227 is the value of 7/8 × (4/11)4/3. At such high redshifts the
ΩΛ term in the Friedmann equation is negligible, so we can modulate it
to keep the universe flat while varying the number of neutrinos, with no
significant effect on the results. The matter-radiation equality redshift is:

zeq =
Ωm

Ωr
− 1

Neglecting ΩΛ, and exploiting the fact that the two other terms in the
Friedmann equation are equal at zeq, it is easy to obtain that:

deq =
c

ΩmH0

√
Ωr
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Its values are reported in the table below, in Mpc and h−1 Mpc.

Nν deq keq
2 89.2 Mpc 59.7 h−1 Mpc 0.0112 Mpc−1 0.0167 h Mpc−1

3 95.9 Mpc 64.2 h−1 Mpc 0.0104 Mpc−1 0.0156 h Mpc−1

4 102.1 Mpc 68.4 h−1 Mpc 0.0098 Mpc−1 0.0146 h Mpc−1

(2) We have that:

keq =
ΩmH0

c

√
2

Ωr

Its values are reported above, in Mpc−1 and h Mpc−1. The relative vari-
ation of keq from 2 to 4 neutrinos is ∼ 14% so this quantity should be
measured to a few percent precision level to have a good measure.

(3) The density parameter of dark matter is:

Ωdm = Ωm − Ωb

If the heaviest neutrino species has a massmν and the others are negligible,
then its mass density is:

ρν = mνnν1 = mν
3ζ(3)

2π2

(
kBTν

h̄c

)3
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where nν1 is the number density of a single neutrino species and

Tν =

(
4

11

)1/3

Tγ

that is 1.94 K today. We equate the mass density ρν , computed at t = t0,
to the dark matter density, ρdm,0 = ρc0Ωdm, obtaining:

mν =
ρdm,0

nν1(t0)

This results in a mass of mν = 11.4 eV.

(4) It is easy to obtain Ων for the smaller mass by using the expression for
ρν(t0) for mν = 0.1 eV. The result is Ων = 2.38× 10−3, much larger than
Ωγ but still a minor contribution to Ωm.

(5) The redshift when neutrinos become non-relativistic can be computed as
the time at which

Tν(z) = Tν0(1 + znr) =
mνc

2

kB

We obtain
znr = 594
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