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ABSTRACT
We present the Model for the Rise of Galaxies and Active Nuclei (MORGANA), a new code for

the formation and evolution of galaxies and active galactic nuclei (AGNs). Starting from the

merger trees of dark matter (DM) haloes and a model for the evolution of substructure within

the haloes, the complex physics of baryons is modelled with a set of state-of-the-art models that

describe the mass, metal and energy flows between the various components (baryonic halo,

bulge, disc) and phases (cold and hot gas, stars) of a galaxy. These flows are then numerically

integrated to produce predictions for the evolution of galaxies. The processes of shock-heating

and cooling, star formation, feedback, galactic winds and superwinds, accretion on to black

holes and AGN feedback are described by new models. In particular, the evolution of the

halo gas explicitly follows the thermal and kinetic energies of the hot and cold phases, while

star formation and feedback follow the results of the multiphase model recently proposed

by Monaco. The increased level of sophistication of these models allows to move from a

phenomenological description of gas physics, based on simple scalings with the depth of the

DM halo potential, towards a fully physically motivated one. We deem that this is fully justified

by the level of maturity and rough convergence reached by the latest versions of numerical

and semi-analytic models of galaxy formation. The comparison of the predictions of MORGANA

with a basic set of galactic data reveals from the one hand an overall rough agreement, and

from the other hand highlights a number of well- or less-known problems: (i) producing the

cut-off of the luminosity function requires to force the quenching of the late cooling flows by

AGN feedback, (ii) the normalization of the Tully–Fisher relation of local spirals cannot be

recovered unless the DM haloes are assumed to have a very low concentration, (iii) the mass

function of H I gas is not easily fitted at small masses, unless a similarly low concentration

is assumed, (iv) there is an excess of small elliptical galaxies at z = 0. These discrepancies,

more than the points of agreement with data, give important clues on the missing ingredients

of galaxy formation.
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1 I N T RO D U C T I O N

Several data sets spanning a large range of distances and lumi-

nosities in most of our past-light cone are now constraining the

background cosmology and the properties of primordial fluctua-

tions with a remarkable precision. Temperature fluctuations of the

cosmic microwave background (Spergel et al. 2003, 2006), distant

supernovae (SNe, Perlmutter et al. 1999; Knop et al. 2003), the large-

scale structure traced by galaxies [2dF, Percival et al. 2002; Sloan

Digital Sky Survey (SDSS), Eisenstein et al. 2005], the statistics

of microlensing (Refregier 2003), the abundance and clustering of

galaxy clusters (Rosati, Borgani & Norman 2002) and the statistics

�E-mails: monaco@oats.inaf.it (PM); fontanot@mpia-hd.mpg.de (FF); taf-

foni@oats.inaf.it (GT)

of the Lyman α forest transmission (Viel, Haehnelt & Springel 2004)

are now giving a consistent picture of our Universe, well described

by the Lambda cold dark matter (�CDM) model with parameters

(�0, ��, �b, h, σ 8) � (0.3, 0.7, 0.04, 0.7, 0.8) (with the last quantity

ranging from 0.75 to 0.9).

This ‘concordance’ model provides the initial conditions for the

evolution of perturbations, responsible for the gathering of DM into

bound and relaxed haloes. These DM haloes host most of the astro-

physical processes that rule the formation of stars and galaxies from

the primordial gas. However, while the initial conditions are speci-

fied and the basic physical laws are known, the formation of galaxies

is still an open problem, due to the high level of non-linearity of the

processes involved and to the wide coupling of scales, from the

km scale of imploding cores of SNe to the Mpc scale of galaxy

superwinds. Galaxy formation is thus a problem of complexity.
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Numerical simulations aimed at resolving galaxies (see

e.g. Pearce et al. 2001; Lia, Portinari & Carraro 2002; Mathis

et al. 2002; Recchi et al. 2002; Steinmetz & Navarro 2002; Toft

et al. 2002; Weinberg, Hernquist & Katz 2002; Springel & Hern-

quist 2003; Tornatore et al. 2003; Governato et al. 2004) are still

struggling both to tame the full complexity of the problem and to

reach a sufficient mass and spatial resolution to resolve the ‘micro-

physics’ of the injection of energy by SNe and accreting black hole

(BHs). As a matter of fact, most simulations of single galaxies are

limited to mass resolutions of ∼105 M� and space resolutions of

∼1 kpc, so the microphysical level is still treated as ‘subgrid physics’

and inserted in the codes with the aid of simple effective models.

The problem is even more severe when trying to introduce accret-

ing BHs within a galaxy (Di Matteo et al. 2003; Kazantzidis et al.

2005), something that many authors regard as the missing ingredi-

ent of galaxy formation. Considering then that most constraints on

galaxies and active galactic nuclei (AGNs) are of a statistical nature,

so that thousands if not hundreds of thousands of galaxies need to

be produced for each model, it is clear that, at variance with what

has happened with DM, a straightforward solution of the galaxy for-

mation problem with N-body simulations is beyond hope for years

to come.

A quicker approach is given by the so-called ‘semi-analytic’

galaxy formation models (White & Frenk 1991; Kauffmann et al.

1999; Somerville & Primack 1999; Cole et al. 2000; Wu, Fabian

& Nulsen 2000; Granato et al. 2001; Hatton et al. 2003; Menci

et al. 2004; Kang et al. 2005; Nagashima et al. 2005a; Bower et al.

2006; Cattaneo et al. 2006; De Lucia et al. 2006), where all the

processes that take place in the formation of galaxies are taken

into account with simple approximated recipes. The main advan-

tage of these models resides in the possibility of predicting the

properties of whole galaxy populations in a short amount of com-

puting time, thus making it possible to achieve a good sampling

of the parameter space. However, it has been remarked that the

(mostly phenomenological) recipes used in these models have often

a weak physical motivation and require the inclusion of free param-

eters that are difficult to constrain otherwise. As a consequence, the

agreement between model and data, when achieved, may not shed

much light on the process of galaxy formation. Moreover, given the

intrinsic complexity of the problem, the models have often strug-

gled to reproduce long-known pieces of evidence, like the shape

of the luminosity function of galaxies, without convincingly show-

ing their predictive power. This is highlighted by the difficulties of

specific versions of semi-analytic models to reproduce some pieces

of evidence, like the high-mass cut-off of the luminosity function

(Benson et al. 2003), the normalization of the Tully–Fisher relation

(Kauffmann et al. 1999), the submm counts (Baugh et al. 2005),

the level of α-enhancement in ellipticals (Nagashima et al. 2005a;

Thomas et al. 2005), the redshift distribution of K-band sources

(Cimatti et al. 2002). From this point of view, it is incorrect to claim

that these models have too many free parameters, as it is clearly

possible to falsify them.

This paper is the first of a series devoted to presenting MORGANA,

a new galaxy formation model which, in comparison to the ones

listed above, treats many of the physical processes at an increased

level of sophistication. Fig. 1 shows a general outline of this model,

that could be applied to most similar models. The most relevant

features of MORGANA are the following:

(i) the evolution of the various components and phases of a

galaxy is followed by integrating a differential system of equations

along each branch of a merger tree, thus allowing for the most

Figure 1. Outline of the main ingredients in the MORGANA code. Merger trees

are taken from the PINOCCHIO tool (Monaco et al. 2002a); galaxy mergers

are treated following Taffoni et al. (2003); spectrophotometry is performed

with GRASIL (Silva et al. 1998). The treatment of gas dynamics of baryons

within the DM haloes is the main argument of the present paper.

general (and non-linear) set of equations for mass, energy and metal

flows;

(ii) the halo gas is treated as a multiphase medium (hot gas,

cooling flow, halo stars) and its evolution is described by a model

that takes into account the thermal and kinetic energies of the hot

and cold phases; this model treats cooling and infall as separated

processes, takes into account the mass and energy injection from

the galaxy to the halo (galactic winds) and from the halo to the

intergalactic medium (IGM; galactic superwinds);

(iii) feedback and star formation are inserted following the re-

sults of the multiphase model by Monaco (2004a, hereafter M04;

2004b), plus an additional prescription for kinetic feedback;

(iv) accretion on to BHs and its feedback on to the galaxy

(through radio jets and quasar-triggered galaxy winds) are built in.

The increased level of sophistication allows to move from a phe-

nomenological description of gas physics, based on simple scalings

with the depth of the DM halo potential, towards a fully physically

motivated one.

MORGANA has not been developed to construct a ‘theory of ev-

erything’ for galaxies; we consider this model simply as a precious

tool (i) to understand the interplay and relative importance of the

various physical processes that take place in galaxy formation, (ii)

to incorporate easily more processes that are thought to influence

galaxies, so as to test their effects, (iii) to produce mock galaxy

catalogues which reproduce particular selection criteria, in order to

investigate the properties of galaxy surveys like sample variance and

completeness level. The ultimate aim is to increase the predictive

power of such galaxy formation models.

On the other hand, the increase in the level of sophistication can

only lead to an increase in the number of parameters of the model.

Many of these parameters are fixed either by observations (like the

cosmological parameters) or purely gravitational N-body simula-

tions (like the parameters related to galaxy mergings), while others

can be fixed in principle with the aid of hydro simulations (like

the parameters related to gas cooling and superwinds). Besides,
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fundamental quantities like the energy of a single SN, the initial

mass function (IMF) of stars, the chemical yields or the parame-

ters connected to the feedback and accretion on to BHs are very

uncertain. This is again a problem of complexity, which will not

be solved by neglecting important degrees of freedom. So, instead

of decreasing the number of parameters we aim to test our model

versus a large number of observational constraints, so as to fix all

the parameters and propose predictions for upcoming and future

observational campaigns.

This paper presents the algorithm in full detail and some re-

sults that show the main potentialities, merits and problems of the

model. The stellar mass function produced by this model has al-

ready been presented in Fontana et al. (2006). Other upcoming pa-

pers will address specific cosmological topics, like the statistics of

the AGN/quasar population (Fontanot et al. 2006a), the assembly

of the stellar mass of bright galaxies (Fontanot et al., in prepara-

tion) and the construction of the stellar diffuse component in galaxy

clusters (Monaco et al. 2006). The paper is organized as follows.

Section 2 presents an outline of the model, describing its structure

and the mass, energy and metal flows. The next sections, from 3

to 11, describe in detail the treatment of all the physical processes

inserted in the model; the reader willing to skip the details may go

directly to Section 12. Section 3 describes the merger trees of DM

haloes, Section 4 the merging of galaxies, Section 5 the physics

of the halo gas phases, Section 6 the formation of bulges and discs,

Section 7 the modelling of stellar feedback, Section 8 the production

of metals, Section 9 the accretion on to BHs. Section 10 discusses

the parameters involved in the model, while Section 11 outlines the

main post-processing phases. Section 12 gives some basic results

of the model and compares them to available observations, while

Section 13 gives the conclusions. Two appendices report details on

the merging and destruction times of satellites and a very prelimi-

nary analysis of stability with mass resolution.

In this paper we use a ‘concordance’ �CDM cosmology with pa-

rameters �0 = 0.3, �� = 0.7, �b = 0.044, σ 8 = 0.9, H0 = 70 km s−1

Mpc−1. All physical quantities are scaled to this H0 value. The

new Wilkinson Microwave Anisotropy Probe results (Spergel et al.

2006), published when this paper was at a very advanced state

of preparation, suggest σ 8 � 0.75, and this could lead to some

modest though significant changes in the predictions given in this

paper.

2 O U T L I N E O F T H E M O D E L

In this section we outline the model, describing the structure of the

code and the system of equations for the mass, energy and metal

flows that is integrated by the code.

2.1 DM haloes and galaxies

The merger trees of DM haloes are obtained using the PINOCCHIO

code (the details are given later in Section 3.1). This is not consid-

ered as an integrated part of the galaxy formation code; any other

code for generating merger trees can be used in its place. With re-

spect to the Millennium Simulation (Springel et al. 2005), the PINOC-

CHIO trees do not give any information on the substructure of DM

haloes.

Like N-body simulations, PINOCCHIO is based on realizations of

Gaussian initial conditions on a cosmological grid, so the mass res-

olution of merger trees is determined by the grid particle mass. Each

DM halo that gets as massive as at least 10 particles1 constitutes a

starting branch of the tree; the time at which this happens is named

appearance time. A galaxy is associated to each starting branch.

When a DM halo merges with a larger one, it disappears as an indi-

vidual entity and becomes a substructure (or satellite) of the larger

DM halo. The fate of substructures is followed using the model of

Taffoni et al. (2003; section 4.1): while the external regions of the

satellite DM halo are tidally stripped, its core, which contains its

associated galaxy, survives for some time. A galaxy that is associ-

ated with an existent DM halo is named central; in general (though

not always) the central galaxy is the largest in a DM halo. Galax-

ies associated with substructures are named satellites. Dynamical

friction brings the orbit of the substructure towards the centre, mak-

ing it eventually merge with the main DM halo; when this happens

the satellite galaxy merges with the central one. In some cases, the

substructure and its associated galaxy can be destroyed by tides.

Substructures can also merge between themselves, but this process

is neglected in the present code.

In general, DM haloes will contain one central galaxy and several

satellites, each associated with a substructure. When two DM haloes

merge, the central galaxy of the more massive DM halo will become

the central galaxy of the merger, while the one of the smaller halo

will become a satellite like the others. The bound between satellites

belonging to the same substructure is assumed to be lost after the

merger, that is, we do not allow for substructure of substructures. As

a consequence, an existing substructure will always be associated

with a single galaxy.

2.2 Algorithm

The flow chart of the algorithm is given in Fig. 2. The algorithm can

be ideally divided into two main parts, represented by the blocks on

the left- or right-hand side of the figure; the first part (in the left-half

of the flow chart) handles the merger trees and calls the numerical

integrator for all the galaxies, the second part (in the right-half)

performs the integration. The algorithm proceeds as follows.

(i) The merger trees are read from the PINOCCHIO output file. Then

a loop on all the trees is started.

(ii) Each merger tree is subdivided into branches. A branch is

defined as the evolution of a DM halo between two consecutive

mergings, be them major or minor; in other words, it corresponds to

a time interval in which no new substructures are added to the DM

halo.

(iii) The galaxies contained in the DM halo during the branch are

looped on. The central galaxy is always addressed as the last one,

so that the evolution of the hot halo gas associated with it can take

into account the energetic input of all the satellites.

(iv) For each satellite galaxy the dynamical friction, tidal strip-

ping and tidal destruction times are computed (Section 4.1).

(v) The time interval corresponding to the branch is subdivided

into smaller intervals, starting or ending at times isample�t , where

isample is a sampling index and �t is usually set to 0.1 Gyr. This is

done to allow for a regular time sampling of baryonic variables. In

1 As shown in Monaco, Theuns & Taffoni (2002b), 10 particles are not

enough to reconstruct robustly a DM halo. On the other hand, in PINOCCHIO

the haloes gather around the peaks of the inverse collapse time field, so the

natural choice for the appearance time of a halo would be the collapse time

of its first (peak) particle, corresponding to the creation of a one-particle

object. We deem that 10 particles is a good compromise between the need

for mass resolution and robustness.
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Figure 2. Flow chart of the MORGANA code; see text for all details.

general the branch ends are not integer multiples of �t ; for instance,

if a galaxy is to be evolved from t1 = 4.386 to t2 = 4.728 Gyr,

the branch will be subdivided into the intervals [4.386, 4.4], [4.4,

4.5], [4.5, 4.6], [4.6, 4.7] and [4.7, 4.728].

(vi) The evolution of the galaxy, the second main part of the

code, is performed in the time interval by integrating a system of

differential equations with a Runge–Kutta integrator with adaptive

time-steps (Press et al. 1992). The time-steps are chosen so as to

have an accurate results to within 10−4 on the mass and energy flows

described below. Of course, the integration of the galaxy stops at its

merger or destruction time whenever these events occur.

(vii) The system of equations integrated by the code and the im-

plemented physical processes are described below (Section 2.4 and

Tables 1–3).

(viii) The integration is interrupted whenever an instability is

found; presently we take into account disc instabilities and quasars-

triggered galaxy winds.

(ix) If relevant, the effect of such instabilities is applied at the

end of the integration, and the loop on time intervals is closed.

(x) At the end of the evolution of the galaxy in the branch, the pre-

dicted events of galaxy mergers, tidal stripping and tidal destruction,

and the removal of the baryonic halo component of new satellites

(described in Section 2.5) are applied.

(xi) The loops on galaxies and on branches are closed, and the

results for all the galaxies in the tree are written on the output file.

(xii) The loop on trees is closed.

2.3 Baryons

The baryonic content of each galaxy is divided into three compo-

nents, namely a halo, a bulge and a disc (Fig. 3). Each component

is made up by three phases, that is, cold gas, hot gas and stars. The

halo component of central galaxies contains the virialized gas per-

vading the DM halo, cold gas associated to the cooling flow and

halo stars. Satellite galaxies do not have any mass (or energy or

metals) in their halo component, and this is justified by the fact

that tidal stripping is very efficient in unbinding the halo compo-

nent from satellites. (From the computational point of view, it is

straightforward to relax this assumption, but we do not implement

this feature here.) For the halo component, the code follows the

mass and metal content of the three phases (cold gas, hot gas, stars),

plus the thermal energy of the hot gas (that determines its temper-

ature) and the kinetic energy of the cold gas (that determines its

velocity dispersion). In total, eight variables are associated to this

component.
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Figure 3. General scheme of mass flows in a model galaxy. The flows

highlighted by dashed lines and grey colours are not used in the present

version of the model. In particular, star formation (and then restoration and

evaporation) in the halo is not active, while in bulge and disc components

the evaporation and hot wind flows, as well as the restoration and cooling

flows, are equated so as to leave the hot phase empty.

Bulge and disc components are formally described in the code

by the same variables. This approach was indeed undertaken as

a follow-up of the M04 multiphase model of a star-forming ISM,

which is presented in some detail in Section 7. However, a straight-

forward implementation of the M04 model, attempted in one of the

first versions of the code, led to a number of unwelcome numeri-

cal complications. We then decided to collect the main results of

the M04 model and insert them as a set of simple recipes. This al-

lows also to have a more transparent grasp of the effect of feedback

in galaxy formation without losing the physical motivation of the

multiphase approach; this is a welcome feature in account of the

lack of a widely accepted model for the evolution of a star-forming

ISM. In summary, the bulge and disc components are described,

in an effectively single-phase formalism, by a more limited set of

four variables, namely the masses of stars and gas, and their metal

masses.

Together with the 16 variables (8 + 4 + 4) associated to the three

components, nine more variables are integrated by the code. The

complete list of the 25 variables is the following:

(i) mass, kinetic energy and metals of cold halo gas;

(ii) mass, thermal energy and metals of hot halo gas;

(iii) mass and metals of halo stars;

(iv) mass and metals of gas in bulge and disc;

(v) mass and metals of stars in bulge and disc;

(vi) cooling radius of the hot halo gas;

(vii) mass, metals and kinetic energy of the cold gas ejected from

DM haloes as a superwind;

(viii) mass, metals and thermal energy of the hot gas ejected from

DM haloes as a superwind;

(ix) BH mass;

(x) BH reservoir.

The sampling of variables in the time grid defined above

(Section 2.2) is performed as follows. At times isample�t the values

of the 16 variables relative to the galaxy components are stored to-

gether with bulge and disc radii and velocities, BH masses, punctual

values for the star formation rates of bulge and disc and accretion

rate on to the BH. Cooling radii, ejected matter and BH reservoirs

are not sampled. With our choice of �t = 0.1 Gyr the time sampling

is adequate to describe old stars, but is too poor for young stars. For

this reason we store the punctual values of star formation in bulge

and disc; in this way we can reconstruct, with a minimal amount of

information, the recent star formation which gives rise to the mas-

sive stars. This procedure is presented and tested in Fontanot et al.

(in preparation) (see also Section 11).

2.4 Physical processes and flows

The present paper is dedicated to a detailed description of all the

physical processes included in the code. Here we give only a global

view of these processes with references to the section of the paper

where they are described. We also report the system of equations

that is integrated by the code, and a list of the mass, energy and

metal flows.

Baryonic matter flows between the components and the phases as

illustrated in Fig. 3. Within each component the three phases may

exchange mass through the following flow terms:

(i) evaporation of gas from the cold to the hot phase (Ṁev);

(ii) cooling of gas from the hot to the cold phase (Ṁco);

(iii) star formation from the cold to the star phase (Ṁ sf);

(iv) restoration from the star to the hot phase (Ṁ rs).

As matter of fact, these flows are formally present in the code but

they are never active at the same time. Indeed, in the halo compo-

nent of central galaxies star formation (and then evaporation and

restoration) are not active. In the bulge and disc components the

hot phase is kept void by equating the restoration and cooling flow

from the one hand, the evaporation and hot wind flow on the other

hand; this is indicated in Fig. 3 by connecting, in the bulge and disc

component, the arrows corresponding to the equated flows. In the

following we will restrict ourselves to the flows that are used in

the present formulation of the model, with the caveat that the other

flows may be easily activated whenever required.

Baryonic matter flows between the components as follows:

(i) primordial gas flows to the halo together with the accreted DM

mass (cosmological infall, Ṁcosm);

(ii) cold gas infalls from the halo to the disc or bulge (Ṁ in);

(iii) cold and hot gas are expelled by the bulge or disc to the halo

in a galactic wind (Ṁcw and Ṁhw);

(iv) both hot and cold gas are allowed to leave the halo in a galactic

superwind (Ṁhsw and Ṁcsw);

(v) this expelled material is allowed to get back to the halo to-

gether with the cosmological infall;

(vi) winds from satellites are injected in the halo component of

their central galaxy (Ṁcsat and Ṁhsat).

Mass conservation implies the following relations:

Ṁ in,H = Ṁ in,B + Ṁ in,D,

Ṁcw,H = Ṁcw,B + Ṁcw,D,

Ṁhw,H = Ṁhw,B + Ṁhw,D. (1)

As illustrated above (Section 2.2), in the cases of instabilities (disc

instabilities and quasar-triggered galaxy winds), galaxy mergings,

tidal stripping, tidal destruction and removal of halo baryonic com-

ponent from new satellites, baryonic masses, energies and metals

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 1189–1219
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Table 1. The system of equations that is integrated by the code.

Mass flows

Ṁc,H = Ṁco,H − Ṁ in,H − Ṁcsw + Ṁcw,H + Ṁcsat

Ṁh,H = Ṁcosm − Ṁco,H − Ṁhsw + Ṁhw,H + Ṁhsat

Ṁs,H = 0

Ṁc,B = Ṁ in,B − Ṁsf,B + Ṁ rs,B − Ṁhw,B − Ṁcw,B

Ṁs,B = Ṁsf,B − Ṁ rs,B

Ṁc,D = Ṁ in,D − Ṁsf,D + Ṁ rs,D − Ṁhw,D − Ṁcw,D

Ṁs,D = Ṁsf,D − Ṁ rs,D

Energy flows

K̇H = K̇co,H − K̇in,H − K̇csw + K̇w,H + K̇csat − K̇ad

ĖH = Ėcosm − Ėco,H − Ėhsw + Ėhw,H + Ėhsat − Ėad

Metal flows

Ṁ Z
c,H = Ṁ Z

co,H − Ṁ Z
in,H − Ṁ Z

csw + Ṁ Z
cw,H + Ṁ Z

csat

Ṁ Z
h,H = Ṁ Z

cosm − Ṁ Z
co,H − Ṁ Z

hsw + Ṁ Z
hw,H + Ṁ Z

hsat

Ṁ Z
s,H = 0

Ṁ Z
c,B = Ṁ Z

in,B − Ṁ Z
sf,B + Ṁ Z

rs,B − Ṁ Z
hw,B − Ṁ Z

cw,B + Ṁ Z
yi,B

Ṁ Z
s,B = Ṁ Z

sf,B − Ṁ Z
rs,B

Ṁ Z
c,D = Ṁ Z

in,D − Ṁ Z
sf,D + Ṁ Z

rs,D − Ṁ Z
hw,D − Ṁ Z

cw,D + Ṁ Z
yi,D

Ṁ Z
s,D = Ṁ Z

sf,D − Ṁ Z
rs,D

Ejected matter

Ṁc,E = Ṁcsw

K̇c,E = K̇csw

Ṁh,E = Ṁhsw

Ėh,E = Ėhsw

Ṁ Z
c,E = Ṁ Z

csw

Ṁ Z
h,E = Ṁ Z

hsw

Black hole flows (equations 81)

ṀBH = min(Ṁvisc , MBH/tEd)

Ṁ resv = Ṁ low J − ṀBH

Cooling radius (equation 28)

ṙcool = (Ṁco,H − Ṁhw,H)/[4πρg(rcool)r2
cool]

are moved between components and galaxies outside the integra-

tion routine. These flows are named in this paper external flows. It is

worth noting that, as star formation in the halo is not allowed, stars

flow to the halo component only through external flows (namely

tidal stripping and galaxy mergings).

The system of equations integrated by the galaxy evolution code

is reported in Table 1. For all the equations, the suffixes c, h and s

in the right-hand sides denote the cold, hot and star phases. In all

pedices the letters H, B, D and E following the comma denote the

flows relative to the halo, bulge and disc components, and the matter

ejected out of the DM halo by superwinds.

Table 2 gives a list of all mass flows, with a quick explanation

and a reference to the equation where they are defined; metal flows

follow trivially mass flows (see Section 8) with the exception of the

newly generated metals, so for sake of brevity we only report these

in the table. Finally, Table 3 gives the list of processes modelled in

this paper, with reference to the relative section and the list of the

related mass and energy flows.

2.5 Superwinds and satellite galaxies

The matter ejected out of the DM halo by superwinds is collected

into the variables denoted in Table 1 by the ‘,E’ pedix. After each

integration interval these variables are stored in a vector, so as to be

re-accreted at a later time together with the cosmological infalling

term; this is explained in Section 5.5.

In the present version of the model, satellite galaxies do not retain

their baryonic halo component. However, satellite galaxies contin-

ually produce galaxy winds as long as star formation is active. The

related flows are given to the halo component of the main DM halo

as follows. First, the (cold and hot) winds and superwinds flows are

equated:

Ṁcsw = Ṁcw,H,

K̇csw = K̇cw,H,

Ṁhsw = Ṁhw,H,

Ėhsw = Ėhw,H. (2)

Then, at the end of the integration over the time interval the ejected

matter is added to a vector aimed to contain the contribution of all the

satellites to the halo component of the central galaxy. We call these

vectors Mcsat, Mhsat and so on. The central galaxy is always evolved

as the last one; when this happens the content of the satellite vectors

is injected to the halo phase at a rate equal to the total mass or energy

divided by the �t time interval:

Ṁcsat = Mcsat/�t,

K̇csat = max(Kcsat, McsatV 2
disp/2)/�t,

Ṁhsat = Mhsat/�t,

Ėhsat = Ehsat/�t . (3)

It is worth noticing that the kinetic energy of the cold wind is re-

computed using the velocity dispersion of the DM halo as long as

this velocity is higher than the kinetic velocity of the cold ejected

gas.

2.6 Initial conditions

At the appearance time all DM haloes are assumed to be as large as

10 particles.2 All the bayons present in these primordial DM haloes

are assumed to be in the hot halo phase, whose thermal energy,

acquired by gravitational shocks, is computed with the model de-

scribed in Section 5.2. An issue with this setting is the quick start

of cooling in these initial haloes. This is in part a numerical artefact

due to the lack of sampling of the tree; if this were resolved with

a smaller particle mass, the DM halo would then possibly contain

some heating source at that time. To limit this resolution effect,

it is assumed that the haloes have just suffered a major merger at

their appearance time, so that the onset of cooling is delayed by a

few sound-crossing times (see Section 5.2 for details). On the other

hand, cooling in small haloes is hampered by the ionizing back-

ground, and this is implemented (following Benson et al. 2002) by

quenching cooling in all haloes with circular velocities smaller than

50 km s−1 (Section 5.3).

Overcooling is connected to the very general problem of the sta-

bility of model predictions with respect to mass resolution. Ap-

pendix B presents a very simple convergence test of the model; the

main conclusion is that model predictions do not converge and that

the 50 km s−1 cut-off motivated by the reionization guarantees that

convergence is forced at low redshift and high masses. This opens a

very delicate topic, which has rarely been addressed in the literature

(see Hatton et al. 2003); we leave a deeper analysis and discussion

to further work, and limit ourselves to pointing out which of the

results presented here are more sensitive to mass resolution. In any

case, as the lack of convergence regards star formation at very high

redshift and faint galaxies, we can safely conclude that the building

of bright galaxies does not depend strongly on mass resolution.

2 Some DM haloes grow larger than 10 particles by a merger, but this detail

is neglected.
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Table 2. Mass and energy flows in the system of equations (Table 1). Metal flows are not reported.

Flow Comment Reference

Mass flows

Ṁco,H Cooling flow Equation (23)

Ṁ in,H Infall from halo Equation (31)

Ṁcsw Cold superwind Equation (42)

Ṁcw,H Cold wind to halo Equation (1)

Ṁcsat Cold wind from satellites Equation (3)

Ṁcosm Cosmological infall Equation (19)

Ṁhsw Hot superwind Equation (38)

Ṁhw,H Hot wind to halo Equation (1)

Ṁhsat Hot wind from satellites Equation (3)

Ṁ in,B Infall to bulge Equations (33), (35)

Ṁsf,B Star formation in bulge Equation (63)

Ṁ rs,B Restoration in bulge Equation (63)

Ṁhw,B Hot wind from bulge Equations (65), (73), (74)

Ṁcw,B Cold wind from bulge Equations (71), (75)

Ṁ in,D Infall to disc Equations (34), (36)

Ṁsf,D Star formation in disc Equation (59)

Ṁ rs,D Restoration in disc Equation (59)

Ṁhw,D Hot wind from disc Equation (59)

Ṁcw,D Cold wind from disc Equation (59)

Kinetic energy of cold halo gas

K̇co,H Energy of cooling flow Equation (25)

K̇in,H Energy lost by infall Equation (32)

K̇csw Energy lost by cold superwind Equation (43)

K̇w,H Energy acquired by winds Equations (61), (67), (72)

K̇csat Energy acquired by satellites Equation (3)

K̇ad Adiabatic expansion Equation (44)

Thermal energy of hot halo gas

Ėcosm Shock-heating of infalling IGM Equation (20)

Ėco,H Cooling of hot gas Equation (24)

Ėhsw Energy lost by hot superwind Equation (39)

Ėhw,H Hot wind to halo Equations (60), (67), (83)

Ėhsat Hot wind from satellites Equation (3)

Ėad Adiabatic expansion Equation (40)

Newly generated metals

Ṁ Z
yi,B New metals in bulge cold gas Equation (78)

Ṁ Z
yi,D New metals in disc cold gas Equation (78)

Ṁ Z
hw,H New metals injected to the halo Equation (77)

BH flows

Ṁ low J Loss of angular momentum Equation (79)

Ṁvisc Viscous accretion rate Equation (80)

3 D M H A L O E S

3.1 DM merger trees

As mentioned above, we use the PINOCCHIO code to generate the

merger trees. The use of PINOCCHIO is motivated by its ability to

give, even with modest computer resources, an adequate descrip-

tion of the hierarchical formation of DM haloes, in excellent agree-

ment with the results of N-body simulations (see also Zhao et al.

2003; Li, Mo & van den Bosch 2005); for instance, the mass func-

tion of DM haloes is recovered to within a 5–10 per cent accuracy

(Monaco et al. 2002a), while the mass function of progenitors of

DM haloes in a specified mass interval is recovered within a 10–20

per cent error (Taffoni, Monaco & Theuns 2002). This code uses a

scheme based on Lagrangian perturbation theory (Moutarde et al.

1991; Buchert & Ehlers 1993): starting from a Gaussian density

contrast field sampled on a grid (very much similarly to the initial

conditions of an N-body simulation) and smoothed over a set of

smoothing radii, the earliest collapse time (the time at which the

first orbit crossing takes place) is computed for each particle. Col-

lapsed particles are then gathered into DM haloes, where each halo

is seeded by a peak of the inverse collapse time field. This procedure

allows a detailed reconstruction of the DM haloes, with known po-

sitions, velocities and angular momenta, and of their merger trees.

The PINOCCHIO merger trees are equivalent to those given by N-body

simulations, with a further advantage (shared with the less accurate

extended Press–Schechter approach; see Bond et al. 1991; Lacey

& Cole 1993) of a very fine time sampling that allows to track the

merging times without being restricted to a fixed grid in time (or

scalefactor). Other notable differences with respect to N-body trees

is the impossibility of PINOCCHIO DM haloes to decrease in mass,

a condition which is not strictly valid for the N-body simulations.

At variance with extended Press–Schechter merger trees, PINOCCHIO

allows for multiple mergers of DM haloes.

The format of the PINOCCHIO outputs (in the updated 2.1 ver-

sion, available at http://adlibitum.oats.inaf.it/monaco/pinocchio/)
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Table 3. List of physical processes implemented in the code, with reference to the relevant section, and relative mass, energy and metal

flows.

Section Flows modelled in that section

Physical processes implemented in the integration

Galaxy winds from satellite galaxies 2.5 Ṁcsat, K̇csat, Ṁhsat, Ėhsat

Hydrostatic equilibrium for the hot halo phase 5.1 –

Shock heating of cosmological infalling gas 5.2 Ṁcosm, Ėcosm

Radiative cooling of hot halo gas 5.3 Ṁco,H, Ėco,H, K̇co,H

Infall of cold gas on the galaxy 5.4 Ṁ in,H, K̇in,H, Ṁ in,B, Ṁ in,D

Galaxy superwinds 5.5 Ṁhsw, Ėhsw, Ėad, Ṁcsw, K̇csw, K̇ad

Disc structure 6.1 –

Bulge structure 6.2 –

Star formation and feedback in discs 7.2 Ṁsf,D, Ṁ rs,D, Ṁhw,D, Ṁcw,D, Ėhw,H, K̇w,H

Star formation and feedback in bulges 7.3 Ṁsf,B, Ṁ rs,B, Ṁhw,B, Ṁcw,B, Ėhw,H, K̇w,H

Metal enrichment 8 Ṁ Z
hw,H, Ṁ Z

yi,B, Ṁ Z
yi,D

Accretion on to BHs 9.1 Ṁvisc, Ṁ low J

AGN feedback 9.2 Ėhw,H

Processes implemented as external flows

Disc instabilities 6.1

Quasar-triggered galaxy winds 9.3

Decay of satellite orbits by dynamical friction 4.1

Tidal stripping at the periastron 4.1

Tidal destruction of satellites 4.1

Galaxy mergers 4.3

Stripping of halo component of satellites 2.5

are such that only the output at the final redshift is needed to re-

construct the merger trees of a realization, and from them compute

the galaxy properties at all times. In PINOCCHIO, each DM halo re-

tains its identity even when it disappears by merging with another

larger halo. The output files contain, for each DM halo that has ever

existed with at least 10 particles, the following information: (i) ID

number, (ii) ID of the halo it belongs to at the final redshift, (iii)

linking list of the haloes, (iv) ID of the halo it has merged with, (v)

mass of the halo at the merging time, (vi) mass of the halo it has

merged with (before merging), (vii) merging redshift, (viii) appear-

ance redshift. Haloes that exist at the final redshift have field (i) and

(ii) equal, and merging redshift equal to −1; field (iv) is also set to

−1, while field (v) contains the mass of the halo at the final redshift

and field (vi) is 0.

Similarly to GALFORM (Cole et al. 2000), the linking list provided

by the 2.1 version of PINOCCHIO is organized in such a way that

merged haloes are accessed so as to preserves chronological order.

This is illustrated in the example of Fig. 4. Each time a halo appears

from a peak, its linking list points to itself. Suppose now that halo 1

merges with the smaller halo 2 at zmerge = 10, and that both haloes

have no substructure. Then the linking list is updated so that halo

1 points to halo 2 and vice versa. At zmerge = 5.3 halo 1 (which

contains halo 2 as a substructure) merges with halo 3, which has no

substructure. Then the last halo of the chain, halo 2, is linked to halo

3, and this back to halo 1. Haloes 5 and 6 merge at zmerge = 7.5, and

their fate is similar to haloes 1 and 2. Halo 5 then merges with the

larger halo 4 at zmerge = 4.1; in this case halo 4 does not link directly

to halo 5, which is put at the end of the chain, but to halo 6. At zmerge =
2.1 haloes 1 and 4 merge. In this case, the last element of the chain

of halo 1 (halo 3) is linked to the second of the chain of halo 4 (halo

6). The final sequence is then 1–2–3–6–5–4. In more general terms,

the two groups are linked in the following order: first the chain of

the surviving DM halo, then the chain of the disappearing one, with

the first element (the main halo before merging) put as last. It is

clear that, starting from the second element of the final chain, two

Figure 4. Example of ordering of the PINOCCHIO merger trees. Circles with

numbers denote DM progenitors, DM haloes are denoted by their linking

lists. In all the mergings shown in this picture, the DM halo coming from the

left-hand side is more massive than that coming from the right-hand side.

subsequent events are always accessed in chronological order. This

does not imply a strict chronological order of all the mergings: in

our example halo 3 (zmerge = 5.3) is accessed before halo 6 (zmerge =
7.5), but the two event are on independent branches of the tree.

3.2 DM halo properties

The physical properties of the DM haloes (which are not predicted

by PINOCCHIO) are computed at each integration time-step (see Fig. 2)

as follows. The density profile of the DM halo is assumed to follow

Navarro, Frenk & White (1995; hereafter NFW), according to which
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a halo with a virial radius rH is characterized by a scale radius rs and

a concentration cNFW = rH/rs. Defining the quantity δc ≡ 200c3
NFW

(1 + cNFW)/[3(1 + cNFW) ln (1 + cNFW) − cNFW], the NFW profile

of a halo at redshift z is

ρDM(r ) = ρc(z)
δc

cNFWx(1 + cNFWx)2
, (4)

where ρc(z) is the critical density at the redshift z and x ≡ r/rs.

The virial radius rH of a halo of circular velocity VH is computed

assuming that its average density its 200 times the critical density

(see e.g. Mo, Mao & White 1998):

VH = [10MHG H (z)]1/3,

rH = VH/10H (z), (5)

where MH is the total halo mass3 and H(z) is the Hubble constant at

z.

The concentration cNFW is computed, as a function of MH and z,

following Eke, Navarro & Steinmetz (2001). Given the mass MH,

redshift z and concentration cNFW we compute the gravitational bind-

ing energy of the halo (UH = ∫
ρ
d3r ) as

UH = G M2
H

rH

δ2
c

(
ln2(1 + cNFW) − c2

NFW

1 + cNFW

)
. (6)

From it and the virial theorem the velocity dispersion of the halo

(such that the total kinetic energy of halo particles is MH V2
disp/2 =

−UH/2) can be computed as

Vdisp =
√

− UH

MH

. (7)

If λ is the spin parameter of the DM halo, its specific angular

momentum is computed as

JH

MH

= G MHλ

√
−0.5UH

MH

. (8)

The DM halo parameters (MH, cNFW, rh, VH, UH, JH) are recomputed

at each time-step along the integration.

The spin parameter λ of DM haloes is in principle provided by

PINOCCHIO, which is able to predicted the angular momenta of haloes.

The predicted momenta show some (modest) degree of correlation

with those of simulated haloes (the spin directions tend to be loosely

aligned within 60◦), and their statistics is reproduced at the cost of

adding free parameters (Monaco et al. 2002b). While even a modest

correlation with the N-body solution is an advantage with respect

to drawing random numbers, the complications involved in recon-

structing the spin history of haloes weight more than any possible

practical advantage. As a consequence, we prefer to randomly as-

sign a λ value to each DM halo, drawing it from the lognormal

distribution:

Plog λ(log λ) d log λ = 1√
2πθ

exp

[
− (log λ − log λ0)2

2θ2

]
, (9)

where we use values λ0 = 0.05 and θ = 0.3 (Cole et al. 2000

use the slightly lower value of 0.23 for θ ; we follow (Monaco,

Salucci & Danese 2000) using 0.3, which is a better fit to many spin

distributions available in the literature and cited in that paper). As

explained in Section 6.1, a variation of λ with time (for instance at

3 In the following we denote by MH the total halo mass, including DM and

baryons, and implicitly assume that the subdominant baryons do not influ-

ence the mass profile. This assumption will be relaxed in the computation

of galaxy discs, Section 6.1.

major mergers) creates problems with the model of disc structure.

To avoid these problems, the λ parameters are held constant during

the evolution of each halo. This does not imply a constant specific

angular momentum for the haloes, as both MH and UH in equation (8)

change with time.

As for DM satellites, it is assumed that their properties (mass,

scale radius, concentration) remain constant after their merging.

Satellites are however subject to tidal stripping, as explained in

Section 4.1. Tidal stripping is only taken into account in two cases:

to strip baryonic mass from discs and bulges, in case of extreme

stripping, and to compute the merging time for substructure after a

merger. In all the other cases the unstripped mass of the satellite is

used.

4 G A L A X Y M E R G E R S , D E S T RU C T I O N
A N D S T R I P P I N G

4.1 Dynamical evolution of satellites

The computation of merging times for satellites follows the model

of Taffoni et al. (2003). In the simplest case, two DM haloes without

substructure merge, so that the smaller halo becomes a satellite of

the larger one. The properties of the two haloes at the merging time

are computed as explained in Section 3.2, and the subsequent evo-

lution of the main halo is neglected (up to the next major merger).

The orbital parameters are extracted at random4 from suitable dis-

tributions, in particular the eccentricity of the orbit (defined as ε =
J/Jcir, where J is the initial angular momentum of the orbit and Jcir

the angular momentum of a circular orbit with the same energy) is

extracted from a Gaussian distribution with mean 0.7 and variance

0.2, while the energy of the orbit, parametrized with xc (defined as

xc = rc/rH, where rc is the radius of a circular orbit with the same

energy and rH the halo radius) is taken to be 0.5 for all orbits. These

numbers are suggested by an analysis of the orbit of satellites in

a high-resolution N-body simulation (Ghigna, private communica-

tion), and are slightly different from the results of Tormen (1997),

who found a lower value (0.5) for ε and did not publish the distribu-

tion of xc (he gave the distribution of the radius of the first periastron,

but this quantity is affected by dynamical friction in a subtle way);

however, we have verified that choosing Tormen’s value does not

induce significant differences in the results. The choice of xc = 0.5

is equivalent to the implicit choice of Somerville & Primack (1999),

who use a flat distribution for ε, while Cole et al. (2000) extract a

combination of the two parameters, ε0.78x2
c , from a lognormal dis-

tribution and Kauffmann et al. (1999) extract ε again from a flat

distribution and use xc = 1.

Galaxy mergings are due to the decay of the orbit of their host

DM satellite by dynamical friction; in this scheme galaxy satellites

can only merge with their central galaxy. Tidal shocks can lead to a

complete disruption of satellites; in these rather unlikely events all

the (dark and baryonic) matter of the satellite is dispersed into the

halo of the central galaxy. Taffoni et al. (2003) give fitting formulae,

accurate to the 15 per cent level, for the merging and destruction

times for substructures that take into account dynamical friction,

mass-loss by tidal stripping and tidal shocks. We use a slightly

4 We have verified that, as for the angular momentum of DM haloes, PINOC-

CHIO is able to estimate the orbital parameters of merging haloes, with

roughly correct statistics. Again, we prefer to extract these parameters from

suitable distributions.
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different version of those fitting formulae, with updated parame-

ters that slightly improve the fits to simulations; these are given in

Appendix A.

Though the merger and disruption times of Taffoni et al. (2003)

include a rather sophisticated treatment of tidal stripping, we imple-

ment this process at a very simple level. Tidal stripping is applied at

the first periastron of the satellite. The tidal radius is computed as the

radius at which the density of the unperturbed satellite is equal to the

density of the main DM halo at the periastron. All the mass external

to the tidal radius is then considered as unbound from the satellite.

However, while the stripping radius is recorded, the halo mass is

not updated but kept fixed in the following evolution. Indeed, disc

structure (see Section 6.1) is computed using the DM halo profile at

of the satellite at its merger time (i.e. ignoring stripping), while the

recomputation of merging times after a major merger is done using

the stripped mass.

Tidal stripping at periastron affects also the fraction of stellar and

gas mass of disc and bulge that lies beyond the tidal radius. Notice

that, for simplicity, neither the DM halo nor the disc and bulge are

assumed to be perturbed by this process beyond the decrease of

mass. Within the model structure, stripping is applied outside the

numerical integration, so it is an external flow (Section 2.2).

In the more general case of two substructured haloes that merge,

we distinguish between major and minor mergers as follows:

major merger of DM haloes : Msat/Mmain > fhmm (10)

(we recall that the main DM halo includes the satellite). N-body

simulations show that when this condition, with f hmm � 0.2, is sat-

isfied the perturbation induced by the satellite leads to a reshuffling

of all the orbits. At a major merger we then re-extract the orbital

parameters and recompute the merger and destruction times for all

the satellites of the main DM halo, as if they just entered the halo.

As a consequence, some galaxies near to their merging time can be

moved to a different orbit that does not lead to merging, while some

other galaxies can suffer tidal stripping more than once. Clearly the

recomputation of the merging and destruction times for a substruc-

ture may not be very accurate, especially for satellites that have

suffered strong mass-loss. In this case we keep the scale radius and

concentration of the satellite fixed, but use (as mentioned above)

the stripped mass to compute the merging and destruction times. As

these times are rather long for small satellites, the final results is that

the galaxies just do not merge and the accuracy of the prediction is

not an issue.

Minor mergers do not influence the evolution of the satellites of

the main DM halo, but do affect the satellites of the smaller DM halo

(going itself to become a satellite), for which there is no difference

between minor and major merger.

4.2 Galaxy merger trees

The galaxy merger trees are constructed, analogously to the DM halo

merger trees, by specifying for each galaxy (i) the galaxy where its

stars lie at the final time, (ii) the merging redshift, (iii) the galaxy it

has merged with, (iv) a linking list for the merged galaxies, (v) and

(vi) the masses of each pair of merged galaxies. Destroyed galaxies

are recorded by assigning a negative value to field (i). The construc-

tion of galaxy trees is performed as follows: at each halo merger

the merging and destruction times for the galaxies are computed

(Section 4.1), then the galaxies are merged or destroyed at that time

if the DM halo they belong to has not been involved in a major

merger nor has become a satellite in the meantime. While multiple

mergers are allowed by PINOCCHIO, galaxy mergers are all binary.

4.3 Galaxy mergers

When two galaxies merge, their fate depends again on the ratio of

their masses. Major mergers of galaxies are defined as

major merger of galaxies : Msat/Mcen > fgmm, (11)

where the parameter fgmm is suggested by simulations to take a value

of 0.3 (Kauffmann et al. 1999; Cole et al. 2000). In this specific

case baryonic masses are used (i.e. the mass in hot, cold and star

phases of the bulge and halo components), and the central galaxy

does not include the satellite, so this condition is similar to that of

equation (10) with a value of 0.25. While the condition on DM haloes

can be computed directly from the PINOCCHIO trees and without

running the galaxy evolution code, the condition of equation (11)

must be computed at the merger time, after the evolution code has

determined the baryonic galaxy masses.

At minor galaxy mergers the whole satellite is added to the bulge,

while the disc remains unaffected. This is at variance with Cole et al.

(2000), that give the stars to the bulge and the gas to the disc. Their

choice is however questionable, as the dissipative matter is more

likely to go to the bulge; this is why we prefer to give everything

to the bulge. A more accurate solution of this problem will clearly

depend on the orbit of the merger, but an implementation of these

second-order effects would require a large set of N-body simulations

to quantify and parametrize these dependences. In any case, our

tests have revealed no strong difference between the two cases (see

Section 6.2 for more comments).

At a major galaxy merger all the gas and stars of the two merging

galaxies are given to the bulge of the central one. Due to the shorter

time-scale of star formation in bulges (see Section 7), a starburst is

stimulated by the presence of gas in the bulge component.

Stripping and galaxy destruction (which is an extreme stripping

event) bring stars to the halo of the central galaxy. As star formation

in the halo is inactive, this is the main way to have stars to the

halo. We anticipate that this mechanism is not very effective in

galaxy clusters, where only a few per cent of the stellar mass is

stripped to the halo, at variance with the 10–40 per cent found in

observed clusters (Arnaboldi et al. 2003; Feldmeier et al. 2003;

Gal-Yam et al. 2003; Zibetti et al. 2005). Murante et al. (2004,

2007) have performed hydro simulations to address this problem,

coming to the conclusion that the high fraction of cluster stars can

be reproduced, but the main mechanism is not tidal stripping but

violent relaxation in major mergers. Very recently, Monaco et al.

(2006), based on MORGANA and on the N-body results of Murante

et al. (2006), proposed that the construction of the stellar diffuse

component of galaxy clusters, that is, the halo star phase, is related

to the apparent lack of evolution of the most massive galaxies since

z=1. They showed that the evolution driven by galaxy mergers alone

is larger than what is observed in large galaxy samples, and that this

discrepancy can be solved if a fair fraction of stars is scattered to

the halo star component at each merger. However, to reproduce the

observed increase of the stellar diffuse component with halo mass,

the fraction of scattered stars must depend strongly on the properties

of the DM halo and of the merging galaxies. This dependence should

be provided by simulations, but this is a work in progress. In this

paper we simply assume that a fraction fscatter of the star mass of

the merging galaxies is scattered to the halo at each major merging.

With this simple rule we are able to produce a low fraction of halo

stars in galactic haloes and a higher one in galaxy cluster.

Interactions between satellites, like binary mergers, flybies (that

stimulate star formation) or galaxy harassment (Moore et al. 1996)

are not included at the moment. We know that these events can
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have an impact on the evolution of galaxies (Somerville & Primack

1999; Balland, Devriendt & Silk 2003; Menci et al. 2004) and AGNs

(Cavaliere & Vittorini 2000). We plan to introduce such events in

the future.

5 H A L O G A S

5.1 Equilibrium model for the hot phase

The hot halo phase is assumed to be (i) spherical, (ii) in hydrostatic

equilibrium in an NFW halo (Suto, Sasaki & Makino 1998), (iii)

filling the volume from a cooling radius rcool to the virial radius rH,

(iv) pressure-balanced both at rcool and rH, (v) described by a poly-

tropic equation of state with index γ p, a parameter that is observed

to take a value of about 1.2 (see e.g. De Grandi & Molendi 2002);

we use the best-fitting value of 1.15. The equilibrium configuration

of the hot halo gas is computed at each time-step as described below,

under the assumption that in the absence of major mergers the gas

re-adjusts quasi-statically to the new equilibrium configuration. We

do not assume that the thermal energy EH of the hot halo phase is

a fixed fraction of the virial energy; on the contrary, we follow its

evolution through the equation given in Table 1. This is done to in-

corporate the response of the hot halo phase to the thermal feedback

from galaxies. Under the assumptions given above, the constraints

on the profile are then the mass and thermal energy of the gas.

The equation of hydrostatic equilibrium:

dPg

dr
= −G

ρg MH(< r )

r 2
(12)

[where P is the gas pressure, r is the radius, MH(< r) is the halo

mass5 within r and ρg the gas density] is easily solved in the case

of an NFW density profile (equation 4). The solution is

ρg(r ) = ρg0

{
1 − a

[
1 − ln(1 + cNFWx)

cNFW

]}1/(γp−1)

Pg(r ) = Pg0

{
1 − a

[
1 − ln(1 + cNFWx)

cNFW

]}γp/(γp−1)

Tg(r ) = Tg0

{
1 − a

[
1 − ln(1 + cNFWx)

cNFW

]}
. (13)

Defining the virial temperature of the halo as Tvir = μhot mp V2
c/3k

(where μhot = 4/(8 − 5Y − 6Z) is the mean molecular weight of

the hot gas; Z = MZ
h,H/Mh,H is the metallicity of the hot halo gas

and Y assumes the solar value of 0.25), η = Tg(r)/Tvir and η0 its

extrapolation at r = 0, the constant a is defined as

a = γp − 1

γp

3

η0

cNFW(1 + cNFW)

(1 + cNFW) ln(1 + cNFW) − cNFW

. (14)

The constants Tg0, ρg0 and Pg0 are defined as the extrapolation of

the density and temperature profiles to r = 0, even though the gas

is assumed to be present only beyond rcool. As mentioned above,

they are fixed by requiring that the total mass and energy of the

gas correspond to Mh,H and Eh,H. The first condition can be solved

explicitly if the energy is specified. Calling I the integral

I(α) =
∫ cNFW

rcool/rs

{
1 − a

[
1 − ln(1 + t)

t

]}α

t2 dt (15)

5 Gravity is supposed to be dominated by DM, so we use for MH(< r) the

NFW mass profile, as if the baryons were distributed as the DM. The error

induced in this assumption is not likely to be relevant; a more sophisticated

treatment would not allow to obtain an analytic solution for the gas profile.

(where for simplicity we declare only the dependence on the α

exponent) we have

ρg0 = Mh,H

4πr 3
s

1

I(1/(γp − 1))
. (16)

The second condition is

Eh,H = 6πkTg0ρg0r 3
s

μhotmp

× I(γp/(γp − 1)). (17)

This equation cannot be solved explicitly, as the coefficient a de-

pends on the energy itself through η0. To find a solution to these two

equations it is necessary to use an iterative algorithm. As a conse-

quence, the computation of the two integrals contained in equations

(16) and (17) is the most time-consuming computation of the whole

code. A dramatic speed-up (at the cost of a negligible error) is ob-

tained by computing the integrals in a grid of values of a, r and γ p;

the solution is then found by linearly interpolating the table.

The function 1 − a[1 − ln (1 + cNFW x)/cNFW] in equations (13)

becomes negative at large radii. In this case density, pressure and

temperature are not defined. Usually this happens beyond the virial

radius rH, unless the central temperature is lower than the following

limit:

η0 < 3
γp − 1

γp

cNFW − ln(1 + cNFW)

ln(1 + cNFW) − cNFW/(1 + cNFW)
. (18)

This condition can be met at high redshift, when cNFW values are

high. In this case no gas is assumed to be present beyond the point

of zero density, so that the gas is bound to the inner part of the halo

and its pressure at the virial radius is null.

This model for the hot halo gas is very similar to that proposed

by Ostriker, Bode & Babul (2005) to model the hot component of

galaxy clusters, with two remarkable differences: first, they do not

follow cooling, so the hot gas is present since r = 0, instead of r =
rcool. Clearly this does not make any difference in cases like galaxy

clusters without cool cores, where rcool � 0. Secondly, they assume

an external pressure, computed on the basis of a fiducial infalling

velocity of cold gas, and extrapolate the gas profile until its thermal

pressure equals the external one. This implies that the hot gas can

extend beyond the virial radius. Our choice is to remove this outlier

gas, and this allows to describe galaxy superwinds (Section 5.5).

Clearly the two criteria should be equivalent in the case of a small

cooling radius and a thermal energy roughly similar to the virial one;

we plan to deepen this point and to compare the predicted properties

of the hot halo gas with simulations in the future.

5.2 Shock heating

The equilibrium model does not specify the amount of thermal en-

ergy of the hot gas. This is acquired by the infalling gas through

shocks. The cosmological infalling mass flow is computed by lin-

early interpolating the DM halo mass between the branch ends

(whose distance in time is �t) and assuming that a fraction �b/�0

of that mass is in IGM:

Ṁcosm = �b

�0

�MH

�t
. (19)

We then assume that this gas acquires an energy equal to fshock times

that suggested by the virial theorem:

Ėcosm = fshock(−0.5 UH)Ṁcosm

MH

, (20)

where the binding energy of the halo UH is given by equation (6).

The parameter fshock is suggested by hydro simulations to be slightly

higher than 1 (Wu et al. 2000). We adopt a value of 1.2.
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A similar heating is applied in the following external flows:

(i) the hot gas contained in the DM haloes at the appearance time

(see Section 2.6);

(ii) the hot halo gas of satellite DM haloes at their merging time;

(iii) the hot halo gas at major mergers.

In all these cases

EH = fshock(−0.5 UH)Mh,H

MH

. (21)

Hydro simulations suggest that any cold gas present in the halo is

reheated by shocks during a major merger. Accordingly, we allow

shock-heating to affect also the cold halo phase at major mergers.

This option is active in all the results presented here, but can be

switched off on request.

Cases (ii) and (iii) refer to gravitational heating due to merging

events. This heating is of course not instantaneous; the energy is

redistributed to the whole halo gas in a few crossing times. This be-

haviour is implemented by quenching cooling for a number nquench of

crossing times rH/VH; after the quenching (which ends at some time

tq), the cooling flow is allowed to start gradually as exp{−[rH/VH

(t − tq)]2}. The parameter nquench is very important to control the

cooling of gas, especially at high redshift. The same quenching

is applied to DM haloes at their appearance time (Section 2.6); it

amounts to assuming that the appearing haloes have just formed by

a major merger.

Using hydro simulations, some authors (Kravtsov 2003; Keres

et al. 2005) have recently pointed out that cold gas can flow directly

to the core of small-mass haloes at high redshift by radiating very

quickly the energy acquired by shocks. Following this idea, Dekel

& Birnboim (2006; see also Cattaneo et al. 2006) have proposed that

this lack of shock-heating is a likely responsible for the observed

transition in the behaviour from dwarf to bright galaxies. Besides,

Croton et al. (2006) implement this idea by equating the infalling

mass flow with the cosmological infall flow in the infall-dominated

haloes. A similar view is taken by Bower et al. (2006), who suppose

that a short cooling time prevents the formation of a hydrostatic hot

halo phase. These considerations question the validity of the shock-

heating and hydrostatic equilibrium hypotheses in infall-dominated

haloes; however, these are also the cases where the infall of gas on

the galaxy does not depend much on the cooling time, so we choose

to retain these hypotheses as they are accurate in the cases where

they are most relevant.

5.3 Cooling

The cooling radius is defined as the radius within which the hot

halo gas has cooled down. In most semi-analytic models the hot gas

profile is computed at a major merger; the time-dependent cooling

radius is then computed as the radius at which the cooling time of a

gas shell is equal to the time since the merger. In the present model

the cooling radius is instead treated as a dynamical variable. This

allows to recompute the gas profile at each time-step, and to incor-

porate the heating effect of the hot wind coming from the central

galaxy.

The cooling rate of a shell of gas of width �r at a radius r is

computed as

�Ṁco,H(r ) = �Mh,H(r )

tcool(r )
, (22)

where �Mh,H = 4πr2ρg(r)�r is the shell mass and tcool(r) =
3kTg(r)μhotmp/2ρg(r)�cool(Tg(r)) is the cooling time at radius r.

For the cooling function �cool, we use the metallicity-dependent

function tabulated by Sutherland & Dopita (1993). The cooling time

depends on density and temperature, but the density dependence is

by far stronger, both intrinsically and because the temperature pro-

file is much shallower than the gradient profile. So the integration

in r can be performed by assuming Tg(r) �Tg(rcool). The resulting

cooling flow is

Ṁco,H = 4πr 3
s ρg0

tcool,0

× I(2/(γp − 1)), (23)

where I is defined in equation (15). In this equation the cooling

time tcool,0 is computed using ρg0 for the density (the dependence

of density on radius is taken into account by the integrand), and

Tg(rcool) for the temperature, as explained above. Analogously to

the integrals of equations (16) and (17), the integral in equation (23)

is computed on a grid of parameter values and then estimated by

linear interpolation in the table. The rate of energy loss by cooling

is computed analogously:

Ėco,H = 3kTg(rcool)

2μhotmp

4πr 3
s ρg0

tcool,0

× I(2/(γp − 1)). (24)

The cooled gas carries with it a kinetic energy:

K̇co,H = 1

2
Ṁco,HV 2

disp, (25)

where Vdisp is the velocity dispersion of the DM halo defined in

equation (7).

When a heating source is present, these two terms behave dif-

ferently. While the energy radiated away by the hot gas at a given

density and temperature does not change, the amount of cooled

mass depends on how much of this energy is replaced by the heat-

ing source. We then compute the cooling time as:

tcool,0 = 3kTg(rcool)μhotmp

2ρg0(�cool − �heat)
(26)

This cooling time is used in equation (23) to compute the mass

cooling flow. A negative value implies a net heating of the source,

in which case the mass cooling flow Ṁco,H (but not Ėco,H) is set to

zero.

The source of heating is the central galaxy, which hampers cooling

through the hot wind energy flow, Ėhw,H. This flow carries the energy

produced by SNe, both in the bulge and in the disc, and by the AGN.

Satellites instead are assumed to orbit on average in the external

regions, so that the energy contributed by their winds is injected

beyond the cooling radius and does not interact directly with the

cooling flow. To compute the heating term it is necessary to specify

how this heating is distributed. For simplicity we assume that heating

and cooling affect the same gas mass 4πr 3
s ρg0I(2/(γp − 1)), that is,

the inner shell at rcool that is effectively cooling. The heating term

is then computed as

�heat = Ėhw,H

4πr 3
s I(2/(γp − 1))

(
μhotmp

ρg0

)2

. (27)

Once the cooling and heating sources are fixed, the evolution of the

cooling radius is computed by inverting the usual relation, Ṁco,H =
−4πρgr 2

cooldrcool/dt , taking into account that the hot wind mass flow

Ṁhw,H is adding to the hot halo phase at the cooling radius:

ṙcool = Ṁco,H − Ṁhw,H

4πρg(rcool)r 2
cool

. (28)

In this way, the cooling radius decreases if the hot wind term

overtakes the cooling term.
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Equation (28) shows that the cooling radius should not vanish.

Moreover, in the case of very strong cooling flows the Runge–Kutta

integrator may try some calls with rcool >rH, giving rise to numerical

problems. The cooling radius is then forced to lie between a small

value (taken to be 0.01 times the scale radius rs) and 90 per cent of

the virial radius rH. This is done by gradually setting ṙcool to zero

when the limits are approached. The presence of a small lower limit

for rcool does not influence the results, because of the flat density

profile in the central regions. The upper limit can instead influence

significantly the behaviour of cooling, but this happens when most

of the hot gas has already cooled, a situation in which a precise

modelling is not very important and the validity of the model itself

is more doubtful (see the discussion in Section 5.1).

The existence of a ‘cooling hole’ at the centre of the halo re-

quires that, as we assumed in Section 5.1, pressure is balanced at

rcool. However, this assumption is clearly unphysical, as the cooled

gas cannot give sufficient pressure support, so this assumption will

work only as long as ṙcool > cs, where cs is the sound speed of

the hot gas. In general, the gas at rcool will be pushed towards

the centre by its pressure. This can be modelled very simply as

follows:

ṙ ′
cool = ṙcool − cs. (29)

We have noticed that this feature induces an excessive and unphys-

ical degree of cooling in the later stages of evolution, when, due to

the decreasing temperature gradient, the residual thermal energy of

the gas gets lower than the virial energy. To avoid it we consider the

sound speed term only when the gas thermal energy Eh,H is higher

than the virial value. This term is included on request, and is used

in the results presented here.

Finally, after reionization the ionizing background is likely to

prevent the cooling of any halo whose circular velocity is smaller

than ∼50 km s−1. As suggested by Benson et al. (2002), to mimic

the effect of the ultraviolet (UV) background we simply suppress

any cooling in all haloes with Vc < 50 km s−1.

5.4 Infall

The dynamical time of the halo at a radius r is defined as the time

required by a mass particle to fall freely to the centre:

tdyn(r ) = 1√
2Vc

(
3δc

200c2
NFW

)−1/2

rs

×
∫ r/rs

0

[
ln(1 + y)

y
− ln(1 + r/rs)

r/rs

]−1/2

dy. (30)

The cold phase is unstable to collapse and flows to the central galaxy.

Starting with White & Frenk (1991), many semi-analytic codes, at

variance with MORGANA, unify the processes of cooling and infall

by computing an infalling radius for the gas as the radius at which

the infalling time of a gas shell is equal to the time since last major

merger, then using the smallest between the cooling and infalling

radii to compute the cooling flow. This choice implies an assump-

tion of no difference between the hot halo gas and the cooled gas

that is infalling towards the central galaxy. The hot wind ejected

by a galaxy acts preferentially on the most pervasive hot phase,

affecting in a much weaker way the cold infalling gas, which nat-

urally fragments into clouds with a low covering factor. So, we

deem that treating the infalling gas as belonging to a different phase

is a step forward in the physical description of galaxy formation,

especially in those infall-dominated haloes where a high fraction

of halo gas is in the cold phase. As a matter of fact, the recipe

by Croton et al. (2006) discussed above (Section 5.2) goes in the

same direction, because with their assumption of Ṁcosmo = Ṁ in,H

(valid for infall-dominated haloes) the cooled gas is not affected by

feedback.

The cold gas is let infall to the central galaxy on a number ndyn

of dynamical times computed at the cooling radius rcool:

Ṁ in,H = Mc,H

ndyntdyn(rcool)
. (31)

The corresponding loss of kinetic energy is

K̇ in,H = KH

ndyntdyn(rcool)
. (32)

The infalling cold gas is distributed between the disc and the

bulge as follows. As a first option, all the infalling gas is given to

the disc, under the assumption that it has the same specific angular

momentum as the DM halo:

Ṁ in,B = 0, (33)

Ṁ in,D = Ṁ in,H. (34)

In presence of a significant or dominant bulge the formation of

such a disc by infall implies that the bulge has no influence on it,

even when a large fraction of it is embedded in the bulge. This is a

rather strong assumption, as the hot pressurized phase pervading the

bulge (Section 7.3) can lead to significant loss of angular momentum

of the gas by ram pressure. Then, as a second option we let gas infall

on the bulge by a fraction equal to the mass of the disc contained

within the half-mass radius of the bulge:

Ṁ in,B = Ṁ in,H

[
1 − exp

(
− RB

2RD

)(
1 + RB

2RD

)]
, (35)

Ṁ in,D = Ṁ in,H exp

(
− RB

2RD

)(
1 + RB

2RD

)
. (36)

Here and in the following, RB denotes the half-mass radius of the

bulge, while RD is the scale radius of the disc.

This option has a significant effect on the ability of quenching

cooling at low redshift by AGN jets (Section 9.2): if the infalling gas

has to wait for an external trigger (like a merger) to get into the bulge

component, and from there to accrete on to the central BH, the feed-

back from the AGN would be activated with a significant delay with

respect to the start of the cooling flow, while the activation is much

quicker if the infalling gas is allowed to flow directly into the bulge.

An interesting multiphase model for cooling and infall has been

proposed by Maller & Bullock (2004). While part of the gas that

resides within the cooling radius cools and fragments into clouds,

a fair fraction of it remains at the same temperature and, due to

the drop in density, with a long enough cooling time to prevent

its cooling. The infall of the clouds to the galaxy is then followed

in detail, taking into account the physical processes (mainly cloud

collisions and ram-pressure drag) that make the gas loose enough

kinetic energy to fall into the galaxy. This process leads to a sig-

nificant slowing down of the infall. Unfortunately, the Maller &

Bullock (2004) model does not take into account the effect of the

residual pressure on the evolution of the cooling radius. Clearly our

ndyn parameter gives a poor representation of this complexity, and a

further sophistication of the modelling of this process in MORGANA

may be worth performing in the future.
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5.5 Galaxy superwinds and cosmological fall-back

Whenever the gas phases of the halo component are too energetic

to be bound to the DM halo, they are allowed to escape as a galaxy

superwind.

The hot gas is let flow away whenever its energy overtakes the

virial one by a factor fwind:

hot wind condition : Ehot,H > fwind Evir, (37)

where Evir = (−0.5)UH Mh,H/MH (see Section 5.2). The parameter

fwind is inserted to avoid the excessive escape of gas that we have

noticed when it is set to unity; the results are rather stable when f wind

∼2, so we adopt the best-fitting value of 1.7 for the rest of the paper.

Clearly this parameter should be fixed by a careful comparison to

hydro simulations. Calling tsound = rh/cs the sound-crossing time of

the halo, the hot wind mass and energy flows are then computed as

Ṁhsw =
(

1 − fwind Evir

Ehot,H

)
Mhot,H

tsound

, (38)

Ėhsw = 3kTg

μhotmp

Ṁhsw. (39)

A quick computation can show that the loss of thermal energy by

adiabatic expansion of the hot gas due to the mass-loss should be

equal to 2/3 of the energy loss: if P = ρkT/μhotmp and dV = ρ dM
then P dV = kT dM/μhotmp. So we set

Ėad = 2

3
Ėhsw. (40)

A similar model is applied to the cold wind (with σ 2
H = 2KH/Mc,H

the velocity dispersion of cold halo clouds and tkin = rh/σ H). The

cold gas is ejected out of the halo if

cold wind condition : KH > fwind

1

2
Mc,HV 2

disp. (41)

The resulting mass and energy flows are:

Ṁcsw =
(

1 − fwindV 2
disp

σ 2
H

)
Mc,H

tkin

, (42)

K̇csw =
(

1 − fwindV 2
disp

σ 2
H

)
KH

tkin

, (43)

K̇ad = 2

3
K̇csw. (44)

The mass ejected by the DM halo is then re-acquired back by it

at a later time. We estimate the fall-back time as follows. The cold

and hot gas phases escape because their typical velocity (kinetic or

thermal) is larger than the escape velocity of the halo they belong

to. At the end of the integration over a time interval, we then scroll

the merger tree forward in time and compute the time at which the

parent DM halo has a larger escape velocity than the typical veloc-

ity of the ejected gas. We then let this gas fall back to the DM halo

by adding it to the cosmological infall flow (equation 19). How-

ever, while the large-scale structure outside a DM halo is clustered,

galactic superwinds are emitted in a much more isotropic way. As

a consequence, much mass could be ejected into voids and never

fall back to the DM halo. We take this into account by letting only a

fraction fback of the ejected gas fall back to the DM halo. Our results

are remarkably insensitive of the value of this parameter; we use 0.5

in the following.

6 BU L G E A N D D I S C S T RU C T U R E

For each exponential disc we record its scale radius RD and its

velocity VD at the optical radius, defined as 3.2RD (Persic, Salucci

& Stel 1996). The half-mass radius of the disc is then equal to 1.6783

RD. For each bulge we record its half-mass radius RB (equal to 1.35

effective radii) and its circular velocity defined as V2
B = GMB/RB.

These quantities are sampled in the time grid defined in Section 2.2.

6.1 Discs

The size of galaxy discs is computed following an extension of the

model by Mo et al. (1998) that takes into account the presence of a

bulge. It is assumed that the hot gas has the same specific angular

momentum as the DM halo, and that this angular momentum is

conserved during the infall. Moreover, it is assumed that the disc is

exponential. The angular momentum of the disc is

JD = 2π

∫ ∞

0

Vrot(r )�D(r )r 2 dr , (45)

where �D(r) = MD exp(−r/RD)/2πR2
D is the exponential profile for

surface density. The rotational velocity given in this formula con-

tains contributions from the DM halo, bulge and disc: V2
rot = V2

H +
V2

B + V2
D. The halo contribution is simply V2

H(r) = GMH(r)/r ×
(1 − �b/�0)6 and an analogous expression is valid for the bulge, for

which we assume a Young (1976) density profile (whose projection

gives the observed de Vaucouleurs profile). The disc contribution is

as usual:

V 2
D = G MD

RD

y2[I0(y)K0(y) − I1(y)K1(y)], (46)

where y = r/2RD and the functions contained in the equation are the

standard Bessel functions. The specific angular momentum must be

equal to that of the DM halo, JD/MD = JH/MH. This translates into

an equation for RD that must be solved iteratively, starting from the

approximate solution RD ∼ 0.71λrH (the simplest case described

by Mo et al. 1998). This computation is a bottleneck for the whole

code, especially if disc structure is updated at each time-step as the

profile of the hot halo gas is. To speed up the code, disc structure

is updated each time the disc grows in mass by some fraction, set

to 1 per cent. We have verified that this approximation reproduces

with fair accuracy a disc which is growing in mass by continuous

infall. Because of feedback, a disc that receives no infalling gas

decreases in mass by ejecting a wind to the halo. This mass ejection

presumably leads to a decrease of surface density with no change in

the radius. We then decide to recompute the radius only when the

disc mass increases with respect to the value at the last update.

Adiabatic contraction of the DM halo as the baryons settle in the

centre is introduced (again following Mo et al. 1998) by assuming

that the adiabatic invariant GM(r)r is constant. This implies that the

DM mass within a radius r comes from a larger radius ri such that

MDM(ri ) + MD(r ) + MB(r ) = ri

r
MDM(ri ) (47)

(here MDM is the unperturbed mass density profile of the DM halo,

and only the non-baryonic DM is considered). Equation (47), which

must be solved together with equations (45) and (46), introduces a

second iteration in the computation, and then a further slow-down. A

6 In this case the density profiles of DM and baryons are so different that they

need to be treated differently, so that, at variance with the computation of

the hot halo gas profile (Section 5.1) and in agreement with Mo et al. (1998),

we exclude baryons from the computation of the DM density profile.
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solution for this would be to solve the equation in a 4D grid of values

of the parameters λ, cNFW, MD/MH and MB/MH, then interpolating

the solution on the table. This improvement is in project. In the

meantime, the computation of adiabatic contraction is switched on

only on request. We find that, at variance with many other authors,

its introduction does not influence strongly the results of the code,

and we ascribe this difference to the introduction of the bulge in the

computation of the angular momentum of the disc (equation 45),

which alone leads to more concentrated discs.

The specific angular momentum of DM haloes changes during

their evolution, both in modulus and in direction. The change in the

latter quantity, for instance, drives those precessions of discs that

are commonly found in N-body simulations. As mentioned above,

PINOCCHIO can provide information on the angular momentum of

DM haloes, so it could be used to track its evolution. A simpler

choice would be that of redrawing λ from its distribution (equation 9)

at each major merger of DM haloes. However, major changes in JH

are not handled easily within the Mo, Mao & White model if a disc

is already formed. In fact, as the DM halo grows in mass the main

contribution to its angular momentum is given by the most recently

accreted mass shells, while the model does not take into account

the internal distribution of angular momentum. As a consequence,

the change induced by last accreted and not yet cooled shell would

force a recomputation of the whole disc structure. This can lead

to unphysical events like sudden bursts of star formation due to a

decrease of λ after a DM halo major merger. Such events can be

avoided either by simply keeping fixed the value of λ for each DM

halo, which is our choice, or by using a more sophisticated algorithm

for disc structure, able to consider the contribution to the angular

momentum of the disc by accreting shells of gas.

A connected sophistication lies in taking into account the inter-

nal distribution of angular momentum, which behaves like JD(r) ∝
M(r)α (Warren et al. 1992; Bullock et al. 2001), with the exponent

α ranging from 1 to 1.3. This has important implications in the

modelling of discs, as it implies that the first cooled gas has a low

angular momentum, and then settles into a more compact, higher

density disc. However, a straightforward implementation of this cri-

terion is not easy, as it leads to a coupling of JD to the amount of

cooled gas and then to the disc mass. This is determined by the

combined action of cooling and feedback, which in turn depends on

the surface density of cold gas and then on RD and JD. This leads to

nasty oscillations or numerical instabilities in the integration.

This illustrates an extreme case of another issue which is not ad-

dressed by this code, namely that the reheated gas of galaxy winds

is assumed to have the same specific angular momentum as the halo,

something that may be unrealistic in many cases. Clearly the dis-

tribution of angular momentum of gas is a topic that needs much

attention. Hydro simulations are the right tool to address this is-

sue, and yet the angular momentum of stellar discs is only recently

showing some hints of numerical convergence in the biggest simu-

lations (see e.g. Governato et al. 2006, but see also D’Onghia et al.

2006). From this point of view, it is remarkable that the simplest

assumptions on the distribution of angular momentum give discs

whose properties are not so different from reality.

6.2 Bulges

If discs contain the baryons that have retained their angular momen-

tum, bulges contain the baryons that have lost most of it. In MORGANA

there are four ways to let gas lose angular momentum and flow to the

bulge. The first is direct infall from the halo. Indeed, as suggested

by Granato et al. (2004) and mentioned above, the first fraction of

gas that collapses is likely to have a low angular momentum, and is

then doomed to become a spheroid. We do not implement this idea

directly, to avoid the numerical problems mentioned in the previous

subsection. However, as explained in Section 5.4, we allow gas to

infall in an existing bulge by a fraction equal to the fraction of disc

mass embedded in a bulge.

The second mechanism is bar instability. Whenever a disc embed-

ded in a DM halo has a sufficiently high surface density, it becomes

unstable to bar formation. The bar brings a fair fraction of the disc

mass into the bulge; we assume this fraction to be f bar = 0.5. For the

condition for disc stability we use the following (Efstathiou, Lake

& Negroponte 1982; Christodoulou, Shlosmann & Tohline 1995;

Mo et al. 1998):

ε � VD

√
RD

G MD

> εlimit. (48)

The value for εlimit ranges from 1.1 for stellar discs to 0.9 for gaseous

disc; as this effect is important at high redshift, when discs are mostly

gaseous, we use the lower value. This condition is checked at each

integration time-step, and whenever it is not satisfied the integration

is interrupted. At this point a fraction fbar of the disc mass (that we

assume to be 0.5) is given to the bulge, and the integration is started

again; in other words, bar instability is implemented as an external

flow. No starburst is explicitly connected with this event, but the

presence of gas in the bulge gives rise to a stronger burst of star for-

mation (see Section 7.3). The results are not strongly sensitive to the

parameter fbar, as the unstable discs typically acquire so much mass

that they undergo a series of consecutive bar instabilities; changing

the value of fbar influences a bit the pattern of repeated starbursts but

does not influence much the final mass in the bulge.

The third mechanism is of course the merging of galaxies. The im-

plementation of mergers has already been described in Section 4.3.

It is worth repeating here that the uncertainty in the fate of gas in

minor mergers (we put the whole satellite in the bulge, other authors

make different choices) does not influence much the results.

In both cases of disc instability and mergers the radius RB of

the bulge formed by the merger of objects 1 and 2 is computed as

suggested by Cole et al. (2000):

(M1 + M2)2

RB

= M2
1

R1

+ M2
2

R2

+ f

c

M1 M2

R1 + R2

. (49)

Here R1 and R2 are the half-mass radii of the merging galaxies,

computed assuming (as done above) an exponential profile for the

disc and a Young (1976) profile for the bulge. For the parameter f/c
we use the values of 2 for mergers and 4 for disc instabilities, as

suggested by Cole et al. (2000).

The fourth mechanism to form a bulge is through feedback. A

necessary condition for a gaseous disc not to transfer angular mo-

mentum outwards is that the dissipative cold gas has a low enough

velocity dispersion, a condition which is satisfied in observed nearby

discs. However, the kinetic energy of the cold phase is determined

by feedback from SNe. We anticipate (see Section 7.1) that for discs

with a high enough surface density of cold gas the velocity disper-

sion of cold clouds can be much higher. This process is observed to

be at play in high-redshift galaxies (Genzel et al. 2006) and implies

a loss of angular momentum and a corresponding thickening of the

disc into a bulgy object. We model this event by simply forcing a

bar instability (i.e. transferring a fraction fbar of mass to the bulge)

whenever the surface density of cold gas �cold,D overtakes a limiting

value:

�cold,D > �limit. (50)
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This mechanism is used in Fontanot et al. (2006a) to enhance the

number of bright quasars, but is not used in the results presented in

this paper.

7 S TA R F O R M AT I O N A N D F E E D BAC K

The treatment of feedback in the present version of MORGANA follows

the multiphase model of M04. As anticipated in Section 2.3, instead

of implementing a full multiphase model of the ISM (which would

be straightforward as far as the coding is concerned, but would lead

to a number of numerical problems) we prefer to insert the main

results of the M04 model as simple recipes, so as to simplify the

numerical integration and to gain a more immediate grasp on the

physical processes inserted. Anyway, we stress that the insertion

of a physically motivated model for feedback in place of a set of

phenomenological recipes (as done in most other galaxy formation

models) is one of the most important features of MORGANA.

M04 studied the evolution of the ISM under the following

assumptions:

(i) the ISM is composed by two phases, a hot and a cold one, in

thermal pressure equilibrium;

(ii) collapsing and star-forming clouds arise from the cold clouds

by kinetic aggregations;

(iii) type II SNe exploding within a star-forming cloud give rise

to a single superbubble;

(iv) the superbubble propagates in the most pervasive hot phase;

(v) the superbubble expands until either it is stopped by the ex-

ternal pressure or it blows out of the structure.

Four possible self-regulated feedback regimes follow naturally

from this setting, depending on whether the superbubbles stop by

pressure confinement or blow-out, before or after the internal hot gas

has started cooling (so as to form a pressure-driven snowploughs,

hereafter PDS).

In M04 it was shown that the dynamics of feedback depends

mainly on the total surface density of the disc �D and vertical

scaleheight Heff of the system. In realistic systems feedback can

take place in the regimes where superbubbles blow-out or are con-

fined in the adiabatic stage. Fig. 5 shows that the adiabatic blow-out

and confinement regimes take place in two different regions of the

�D –Heff space, separated by the relation:

�D = 8

(
Heff

1000 pc

)−0.8

M� pc−2. (51)

The numerical constants in this relation depend on the (uncertain)

values of the parameters used in the model, so they are to be con-

sidered as indicative.

Galaxy discs and bulges tend to stay, respectively, in the adiabatic

blow-out and confinement regimes, so at a basic level there is no

much doubt on how to apply the feedback regimes within a galaxy

formation code: discs are in the adiabatic blow-out regime, bulges

are in the adiabatic confinement regime. However, the central region

of a disc can be in the adiabatic confinement regime for at least two

reasons: (i) it is embedded in a bulge, so that its ISM is pressurized

by the bulge hot phase; (ii) its surface density is high enough to cross

the limit of equation (51) for adiabatic confinement. This happens at

a typical surface density of �D ∼ 100–300 M� pc−2. Point (i) has

been used to justify the direct infall of gas from the halo to the bulge

(Section 5.4). Point (ii) has been mentioned in Section 6.2 to argue

for feedback-induced loss of angular momentum, and the effects of

such feedback have been modelled by forcing bar formation when

Figure 5. Feedback regimes as a function of surface mass density and verti-

cal scalelength. Green stars denote systems in the adiabatic blow-out regimes

(the encircled points highlight the unstable systems; see M04), red dots de-

note systems in the adiabatic confinement regime, blue crosses denote sys-

tems in the PDS confinement regime. The blue continuous lines separate the

regions with different feedback regimes. The green and red shaded areas give

the typical regions occupied by galaxy discs and bulges. This is an adapted

version of Fig. 3(a) of M04.

the surface density of cold gas is high (equation 50). We show more

details and results on this mechanisms in Fontanot et al. (2006a).

To fully implement the M04 feedback recipes in MORGANA it is

necessary to assess the role of the velocity dispersion of cold clouds,

a quantity which is left as a free parameter in that paper. This is done

in the following subsection. After that we explain how we implement

feedback in the case of thin or thick systems.

7.1 Kinetic feedback and the velocity dispersion of cold clouds

We do not include here a full self-consistent treatment of the kinetic

energy of cold clouds, but try to take into account its effect as fol-

lows. The velocity dispersion σcold = √
2K/Mcold of cold clouds in

the ISM of a star-forming galaxy is determined as a first approxima-

tion (i.e. neglecting all mass flows) by the equilibrium between the

injection of kinetic energy by SNe and the dissipation by turbulence:

K̇ = K̇SN − K̇ds. (52)

The injection of kinetic energy is

K̇SN = εk
Ṁ sf

M�,SN

ESN, (53)

where ESN is the energy of a SN, M�,SN is the mass of newly formed

stars per SN and εk is its fraction given to the cold phase as kinetic

energy. The rate of energy dissipation is observed in hydro simula-

tion to be of the order (Mac Low 2003)

K̇ds = 1

2

Mcoldσ
3
cold

Ldrive

, (54)

where Ldrive is the scale at which turbulence is driven, suggested

to be twice the diameter of the typical size of the superbubble.

To determine σ cold we assume that an equilibrium configuration is
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quickly reached, so that K̇ = 0. We then obtain

σcold = σ0

(
t�

1 Gyr

)−1/3

, (55)

where σ 0 = [2Ldrive εk ESN/M�,SN(1 Gyr)]1/3 and the time-scale for

star formation is t� = Mcold/Ṁ sf. In a thin system like the Milky

Way the fraction of (thermal and kinetic) energy injected into the

ISM is predicted by M04 to be about 5 per cent, so εk will be of the

order of 0.01, while the driving scale should be of the order of the

vertical scalelength of the system, ∼100 pc. The numerical value of

σ 0 is then

σ0 = 9.3

(
Ldrive

100 pc

)1/3

×
(

εk

0.01

)1/3

E1/3
51

(
M�,SN

120 M�

)−1/3

km s−1. (56)

The predicted value of σ cold for a Milky Way-like galaxy (with

t� ∼ 2 Gyr) is then ∼7 km s−1, in remarkable agreement with the ob-

served value which ranges between 6 and 9 km s−1. Much higher val-

ues of the velocity dispersion are expected in thick systems, where

εk is much higher (all the SN energy is retained by the system) and

t� much lower. This is in agreement with the sparse data available

(see e.g. Dib, Bell & Burkert 2006 for local galaxies, and Genzel

et al. 2006 for galaxies at z ∼2). As a consequence, we neglect ki-

netic feedback in discs but take it into account in bulges. Given the

great uncertainty in the driving scale of turbulence in mergers, the

normalization constant σ 0 will be left as a free parameter.

We stress that equation (56) is valid under the assumption that

turbulence is driven by SNe and not by gravitationally induced mo-

tions like differential rotation or tidal disturbances in mergers. In

the case of our Galaxy, Mac Low (2003) argues from energetic ar-

guments that SNe are the most likely drivers of turbulence, and the

good agreement of the predicted value of σ cold given above with the

observed one suggests that they are at least a significant contributor.

In thick systems, like gas-rich spheroids or mergers, gravitationally

induced turbulence will be very important. However, the most rel-

evant consequence of a high value of σ cold for our purposes is the

massive removal of cold gas during episodes of strong star forma-

tion. It is clear that if a condition σ cold >VB is reached in a gas-rich

bulge, then the driver of turbulence must be star formation and not

gravity, while in the case of a low value of σ cold no mass is removed.

So, in this case the assumption will work in the range where its

results are most influential.

7.2 Discs as thin systems

In thin systems, superbubbles blow out of the disc soon after they

form and while they are still in the adiabatic stage; their porosity

remains low. The fraction of the SN energy that is injected into the

ISM is limited to a few per cent of the total budget, while most

energy is directly injected into the halo through a tenuous, metal-

rich hot wind. The ISM self-regulates to a configuration that is very

similar to that of the Milky Way (M04). The star formation regulates

to a level similar to that found in nearby galaxies by Schmidt (1959)

and quantified more recently by Kennicutt (1998).

In M04 the resulting star formation time-scales were incorrectly

scaled with the infalling time and the total surface density �D of

the system. A more careful analysis reveals that, for a fixed set

of parameters and at fixed Heff, t� depends mostly on the cold gas

surface density �cold,D. This is expected, as the star formation time-

scale is determined by the intrinsic properties of the ISM, not by the

rate at which mass is acquired by it or by the amount of stars present.

A better fit of the results of M04 in the adiabatic blow-out regime

(for the standard set of parameters defined in that paper) gives

t� = 6

(
�cold,D

1 M� pc−2

)−0.4 (
Heff

100 pc

)0.65

Gyr. (57)

In the simple case of a constant value of Heff for all galaxies, the

Schmidt–Kennicutt law is recovered with a very similar normal-

ization (however, observations refer to integrated quantities, this

prediction refers to a section of the disc). But the assumption of a

constant Heff is rather artificial, as the vertical scalelength of the cold

gas is determined by the vertical gravitational equilibrium as Heff =
σ 2

cold,D/πG�D, so a constant value would imply a tuned variation

of �D and σ cold,D. The other simple possibility is to assume a con-

stant value for σ cold,D. This leads to the prediction t� ∝ �−1.05
cold,D f 0.65

cold ,

where f cold,D is the fraction of cold gas in the disc. This relation is

apparently steeper than the observed Schmidt law; however, σ cold,D

and f cold,D are usually correlated in galaxies, in that lower σ cold,D

discs, having lower star formation rates, retain a greater fraction

of their gas. For instance, with our reference choice of parameters

(Section 12) we obtain f cold,D ∝ �0.8
cold,D, which implies the much

shallower relation t� ∝ �−0.53
cold,D.

The dependence of the velocity dispersion on the star formation

time-scale, equation (55), is then inserted, through the definition of

Heff, into equation (57), and the resulting relation is normalized so as

to lie on the average Schmidt–Kennicutt relation at �cold,D = 13 M�
pc−2 (the gas density of the Milky Way, obtained by assuming

RD = 3.5 kpc and Mcold,D = 5 × 109 M�, see Cox 2000). The

resulting relation for the star formation time-scale in discs is

t�,D = 9.1

(
�cold,D

1 M� pc−2

)−0.73 (
fcold,D

0.1

)0.45

Gyr. (58)

This relation is again apparently steeper than the Schmidt–Kennicutt

one, but when the correlation between �cold,D and fcold is taken into

account we obtain t�,D ∝ �−0.37
cold,D or �sfr,D ∝ �1.37

cold,D, in excellent

agreement with the observed Schmidt law.

Other complications can be introduced in this picture: if the driv-

ing length Ldrive is equal to twice the diameter of the blowing-out

superbubbles, it will scale with Heff. Moreover, the efficiency of

feedback is known in M04 to increase slightly with �D (and then

with �cold,D). Introducing these dependences we obtain a scaling

of t� with �cold,D and f cold,D similar to equation (58), with slightly

different exponents. We have verified that these somewhat different

descriptions of feedback do not give significantly different results,

so we keep equation (58) as a reference.

According to M04, in the adiabatic blow-out regime the mass

ejection rate due to the action of superbubbles is modest, while

much gas belonging to the hot phase leaks out of the halo simply

because it is too hot to be confined by the disc. This unavoidable

mass flow, observed as a hot corona surrounding the star-forming

discs (see e.g. Fraternali et al. 2002), amounts to a mass-ejection

rate very similar to the star formation rate. We then set the disc hot

wind term Ṁhw,D as equal to the star formation rate Ṁ sf,D. This is at

variance with most other galaxy formation models, where the rate of

gas reheating, equivalent to our Ṁhw,D, is related to the star formation

rate through a β parameter, assumed to scale as a power of the disc

velocity. Our assumption is equivalent to β = 1; the higher ejection

efficiency in small discs will then be due to galaxy superwinds

triggered by the energy injection from the galaxy. Finally, we neglect

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 1189–1219



1206 P. Monaco, F. Fontanot and G. Taffoni

any cold wind term, due to the results of M04 and to the predicted

low level of turbulence in discs (Section 7.1).

Using the instantaneous recycling approximation (see also Sec-

tion 8), we let a fraction frest of the mass of newly formed stars to

be restored to the ISM. Summing up, the star formation, restoration

and wind mass flows in discs are

Ṁ sf,D = Ṁcold,D/t�,D,

Ṁ rs,D = frest Ṁ sf,D,

Ṁhw,D = Ṁ sf,D,

Ṁcw,D = 0. (59)

The hot wind mass flow does not carry much thermal energy:

assuming a typical temperature of 106 K (M04) and for M�,SN =
120 M� and 1051 erg per SN, the fraction of SN energy carried away

by this wind is �0.05. However, most SN energy is blown out to the

halo by the blowing-out superbubbles, and this energy mixes with

the thermal energy of the hot outflowing wind. We then assume that

a fraction f th,D of a 1051 erg SN is carried by the hot wind gas; this

fraction is estimated to be ∼0.8 by Monaco (2004b). However, this

number is highly uncertain because (i) the loss of SN energy within

the star-forming cloud could be higher, as many authors working

on the physics of ISM have often claimed, (ii) the SN energy could

be well in excess of 1051 erg, (iii) some energy could be lost in the

interaction with the hot halo gas. Moreover, there is a degeneracy

between this parameter and M�,SN, which depends on the IMF. It is

then wise to leave f th,D as a free parameter; it is however remarkable

that its best-fitting value turns out to be 0.5, not far from the value

suggested by Monaco (2004b).

To the energy of type II SNe we add a contribution from type Ia

SNe as one per year per 1012 M� of stars. This is done in order to

test the energetic effect of these SNe. In the case of thin systems

with a continuous star formation, and given the uncertainty on f th,D,

the contribution from type Ia SNe is almost irrelevant. As suggested

for instance by Recchi et al. (2002), type Ia SNe may have a higher

efficiency of energy injection, as they do not explode in the dense

molecular clouds. As a consequence, one might want to have a

different efficiency f th,Ia for the two SN types. However, given the

modest importance of these objects we prefer not to add a further

parameter.

The contribution of the disc to the hot wind energy term is then

Ėhw,H|disc = fth,D ESN

(
Ṁ sf,D

M�,SN

+ 1 SN yr−1 Mstar,D

1012 M�

)
. (60)

The outflowing hot gas will interact with the halo cold phase in a

way that is difficult to model. In order to be able to constrain the

effect of this process, we allow for a fraction of the thermal energy

to be given to the halo cold phase:

K̇w,H|disc = fkin Ėhw,H|disc. (61)

For simplicity we do not subtract this energy from the hot wind

budget. We stress that this term is not due to a contribution of cold

wind but to the interaction of the hot wind with the cold halo phase.

Star formation in the external parts of galaxy discs is known

to be truncated (see e.g. Kennicutt 1989), and this is likely due

to the differential rotation, even though also the thermal transition

from warm to cold gas may play a crucial role, as suggested by

Schaye (2004). This author also suggests that the threshold for star

formation may be simply expressed in terms of a threshold for gas

surface density, which scales with the disc and ISM properties and,

very importantly, with the ionizing UV background. We implement

this threshold �thr for star formation simply by increasing the star

formation time-scale t�,D by the inverse of the fraction of disc mass

for which �cold,D > �thr. Clearly, a better but more complicated

choice would be to divide the disc into three zones, corresponding to

the bulge, the star-forming disc and the gas beyond the star formation

threshold; this is left to future work. We have also tried to modulate

this threshold with redshift, following the increase by an order of

magnitude of the ionizing background from z = 0 to 1 (Bianchi,

Cristiani & Kim 2001). However, the dependence of the threshold

on the ionizing background, is so weak that this modulation does

not influence the results appreciably.

7.3 Bulges as thick systems

In the model by M04 the gravitational perturbations to the ISM are

neglected. This assumption is questionable for spiral discs, but the

coincidental similarity between the time-scale for kinetic aggrega-

tions and the disc time-scale, that drives the sweeping by spiral arms,

makes the kinetic aggregation mechanism a good substitute for spi-

ral arms in creating massive clouds, at least at an order-of-magnitude

level. Things change in the case of thick systems like bulges, where

most energy is efficiently pumped into the hot phase so that the

ISM is much more pressurized, the star-forming clouds are much

smaller and denser, and kinetic aggregations are disfavoured. This

leads to the prediction of a lower level of star formation compared

with the Schmidt–Kennicutt law (fig. 7 of M04). However, tidal dis-

turbances will be much stronger in a bulgy object, at least when it is

formed through a disc instability or a merger, so that the formation

of collapsing clouds will not be determined by kinetic aggregations.

Moreover, in a major merger the pressurization due to the onset

of the adiabatic confinement regime will cause a quick drop of the

Jeans mass, and this will make most clouds present in the merging

discs collapse and form stars in a short time. These transient effects

have not been properly modelled by M04, so we prefer to determine

the star formation time-scale directly from the Schmidt law:

t�,B = 4

(
�cold,B

1 M� pc−2

)−0.4

Gyr. (62)

The resulting star formation and restoration rates in bulges are

Ṁ sf,B = Mc,B/t�,B,

Ṁ rs,B = frest Ṁ sf,B. (63)

As for the thin system case, the rate at which hot gas flows to

the halo is similar to the star formation rate, so that we retain this

prediction. While in thin systems most energy (though not most

mass) is injected to the halo mainly by blowing-out superbubbles,

in thick systems the energy is ejected mainly through this hot wind.

In the M04 model the typical temperature of the hot phase is found to

be of ∼107 K, higher by an order of magnitude than the thin system

case; the fraction of SN energy carried away by the hot wind is then

f th,B � 0.5, slightly lower than the thin system case. Moreover, while

a disc is unable to confine a gas phase with a temperature as high as

∼106 K, a massive bulge can gravitationally confine its hot phase,

whose temperature corresponds roughly to the virial temperature of

a bulge with VB ∼ Vhot = 300 km s−1. We then limit the hot wind

as follows:

β =
√

V 2
hot − V 2

B

Vhot

, (64)

where of course β = 0 if VB > Vhot. The resulting hot wind rate is

Ṁhw,B|therm = β Ṁ sf,B (65)
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while the hot wind energy is

Ėhw,H|bulge = fth,B ESNβ

(
Ṁ sf,B

M�,SN

+ 1 SN yr−1 Mstar,B

1012 M�

)
. (66)

As for the thin systems, we allow some energy to accelerate the cold

halo phase:

K̇w,H|bulge,hw = fkin Ėhw,H|bulge. (67)

Because in thick systems all the energy of SNe is injected to

the ISM and star formation time-scales are much shorter (in virtue

of the increased surface density), the injection of kinetic energy

leads to velocity dispersions of the cold phase much larger than

the ∼7 km s−1 found in discs. In this case some cold clouds may

get enough kinetic energy to be able to leave the potential well of

the bulge. The probability that a cold cloud is unbound, that is, it

has a velocity larger than the escape velocity of the bulge,
√

2VB,

is computed under the hypothesis of a Maxwellian distribution of

velocities with rms σ cold,B:

Punb = erfc

(
VB

σcold,B

)
+ 2√

π

VB

σcold,B

exp

(
− V 2

B

σ 2
cold,B

)
. (68)

The average velocity of the unbound clouds is

vunb = σcold,B

4√
2π

[
1 + (

VB/σcold,B

)2
]

exp
(−V 2

B/σ 2
cold,B

)
Punb

. (69)

The velocity of the clouds after being ejected out of the bulge will

be

vout =
√

v2
unb − 2V 2

B . (70)

This process will generate a wind flux roughly equal to the unbound

mass, PunbMc,B, divided by the crossing time RB/vunb. This outflow

is naturally identified with a cold wind, adding mass to the cold halo

phase. The cold wind mass flow is

Ṁcw,B = Mc,B Punb

vunb

RB

, (71)

K̇w,H|bulge,cw = 1

2
Ṁcw,Bv2

out. (72)

However, the fate of the cold clouds ejected by a bulge may be dif-

ferent. The exit from the pressurized bulge to the halo would lead

to an expansion of those clouds, making them much more sensitive

to the bow shock generated in their interaction with the hot halo

gas and to thermal evaporation. As a result, the cold clouds ejected

by the bulge could be heated and mix with the hot phase. This is

analogous (though not in the details) to what happens when kinetic

feedback is implemented in smoothed particle hydrodynamics sim-

ulations: a cold particle neighbouring a star-forming region is given

some kinetic energy, but this energy is quickly thermalized by the

interaction with the other particles. If this is the case, the cold and

hot wind flows should be given as follows:

Ṁhw,B|kin = Mc,B Punb

vunb

RB

, (73)

Ṁhw,B = Ṁhw,B|therm + Ṁhw,B|kin, (74)

Ṁcw,B = 0. (75)

From the energetic point of view, the kinetic energy of this outflow

will be typically not enough to heat the gas to a high temperature,

so the heating will be done with the same energy budget of equa-

tion (67); in other words, no energy is added to the Ėhw,H term. We

have implemented both possibilities, and the choice between the two

has been left free. The results presented here are obtained giving the

outflowing gas to the hot phase.

8 M E TA L S

The evolution of metals is given by the equations reported in Table 1.

In this set of equations most metal flows are obtained from their

related mass flow as follows:

Ṁ Z
flow = M Z

source

Msource

Ṁflow, (76)

where Msource and MZ
source are the gas and metal masses of the source

phase. The cosmological infalling gas is assumed to have a metal-

licity Zpre ∼ 10−6 due to pre-enrichment by sources that are below

the mass-resolution limit (from popIII stars to very small primeval

galaxies). These flows take into account the transfer of metals among

phases and components, but not their production.

We assume that (i) metals are produced by newly formed stars in

the instantaneous recycling approximation, that is, their production

follows instantaneously star formation; (ii) the new metals are in-

stantaneously mixed with the ISM. Newly metals are spread into the

ISM mainly by SNe, so analogously to the energy they are likely to

be selectively ejected to the halo. This is clearly true in the blowing-

out thin systems, but even in thick systems metals are first mixed

with the hot gas that escapes the halo at a rate equal to the star forma-

tion rate. To model this effect without using explicitly a multiphase

description of the ISM, a fraction f Zej
of the new metals is ejected

directly to the halo through hot winds. In the case of bulges, this

fraction is multiplied by the β factor of equation (64), to take into

account the ability of massive bulges to retain the outflowing hot

gas. We have

Ṁ Z
hw,H|ej = fZej

Y (β Ṁ sf,B + Ṁ sf,D), (77)

where Y is the fraction of mass in newly produced metals per gen-

eration of stars. This term is added to the Ṁ Z
hw,H metal flow; satel-

lite galaxies will inject their metals to the halo component of the

main DM halo they belong to through the satellite metal flows. The

other metals will be given to the ISM of the component they belong

to:

Ṁ Z
yi,B = (

1 − β fZej

)
Y Ṁ sf,B ,

Ṁ Z
yi,D = (

1 − fZej

)
Y Ṁ sf,D.

(78)

A value of f Zej
= 0.5 will be used in the following.

9 AG N AC T I V I T Y

9.1 Accretion on to black holes

The modelling of BH accretion in MORGANA has already been de-

scribed, though in a slightly different way, by Monaco & Fontanot

(2005), and will be briefly summarized here.

A seed BH of mass Mseed is put at the centre of each DM halo.

These BHs may be generated by the collapse of the first stars

(e.g. Volonteri, Haardt & Madau 2003). Seed masses should be

of the order of tens to hundreds M�; however, they start growing

very soon during the early evolution of baryons in DM haloes. This

happens at times and for DM halo masses that are not sampled in the

typical runs used in galaxy formation. We then use a higher value

for the seed mass, Mseed = 1000 M�; the results are quite stable for

reasonable variations of this parameter.
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The accretion of gas on to the BHs is possible only if this gas has

lost nearly all of its angular momentum. The first step in this loss

is the same that leads to the formation of bulges; we then base our

computation of BH accretion on the cold bulge gas. As the amount of

accreted gas is small, we do not remove the accreted mass from the

matter budget. In other words, the mass in BHs does not obey a mass

conservation constraint as the mass of all the other components.

The gas is assumed to lose angular momentum at a rate pro-

portional to the star formation rate. This is justified by the radiation

drag mechanism proposed by Umemura (2001) and used by Granato

et al. (2004). However, a connection between loss of angular mo-

mentum and star formation likely has a more general validity, as

many mechanisms able to cause a loss of angular momentum (tur-

bulence, kinetic aggregations, etc.) are directly or indirectly driven

by massive stars and SNe. The simplest way of modelling the loss

of angular momentum is then

Ṁ low J = flow J Ṁ sf,B. (79)

More generally, the accreted mass could scale as a power law of the

star formation rate; for instance, angular momentum loss driven by

encounters would likely scale with the square of the driving force.

This is described in detail in Fontanot et al. (2006a); we describe

here only the simplest choice.

We follow Granato et al. (2004) by assuming that this gas does not

flow directly on to the BH but settles on a reservoir of low angular

momentum gas, whose mass is Mresv. From this reservoir the gas

accretes on to the BH at a rate regulated by the viscous time-scale

of the accretion disc, modelled by Granato et al. (2004) as

Ṁvisc = kaccr

σ 3
B

G

(
Mres

MBH

)3/2 (
1 + MBH

Mresv

)1/2

, (80)

where the constant kaccr is suggested by the authors to take a value7

∼0.001, σ B � 0.65 VB is the 1D velocity dispersion of the bulge

and MBH is of course the BH mass.

Accretion is always limited by the Eddington–Salpeter rate,

whose time-scale (for a radiation efficiency of 0.1) is tEd = 0.04

Gyr. The evolution of the BH reservoir system is then

ṀBH = min

(
Ṁvisc ,

MBH

tEd

)
,

Ṁ resv = Ṁ low J − ṀBH.

(81)

In Monaco & Fontanot (2005), the accretion rate on to the BH was

modelled simply as Mresv/tEd. We prefer equation (80) in virtue of

its sounder physical motivation.

9.2 Feedback from jets

Jets coming from radio-loud AGNs are though to be one of the most

promising mechanisms to stop the cooling flows in galaxy clusters

(McNamara et al. 2005; Voit & Donahue 2005). Besides, a success-

ful reproduction of the high-luminosity cut-off of the luminosity

function of galaxies requires a proper modelling of this kind of feed-

back (Benson et al. 2003; Bower et al. 2006; Croton et al. 2006).

The efficiency of radiation of AGNs is known to decrease when the

accretion rate in units of the Eddington rate ṁ = ṀBHtEd/MBH is

lower than ∼10−2; these slowly accreting BHs however radiate very

efficiently in the radio (see the discussion in Merloni, Heinz & Di

7 Because of a misprint, the value is indicated to be 10−4 in their paper, while

the correct value is an order of magnitude larger.

Matteo 2003). It is then reasonable to assume that the efficiency of

energy emission in jets is 0.1 if ṁ is small, and lower for higher

accretion rates. As ∼10 per cent of bright QSOs are radio-loud,

we estimate the efficiency of jet emission as 0.01 in the case of

ṁ > 0.01.

As suggested by Croton et al. (2006), the efficiency with which

this energy heats the hot halo gas component should scale with the

hot gas temperature to the power 3/2. In order to keep the expression

simple and avoid possible unwanted numerical instabilities in the

integration, we scale the efficiency with the circular velocity of the

halo:

fjet = fjet,0

(
Vc

1000 km s−1

)3

. (82)

The energy injected into the halo hot gas is then

Ėhw,H|jets =
{

fjet0.1 ṀBHc2 if ṁ < 0.01,

fjet0.01 ṀBHc2 if ṁ > 0.01.
(83)

This mechanism benefits much by the direct infall of gas to the

bulge, described in Section 6.2, but, as demonstrated in Appendix

B, works only for particle masses not higher than 109 M�.

9.3 Quasar-triggered galaxy winds

A bright quasar shining into a star-forming bulge can inject a great

amount of energy into the ISM, leading to a massive removal of

cold gas. This mechanism has been described in detail by Monaco &

Fontanot (2005). These winds have a modest effect on the formation

of a galaxy, but influence the formation and evolution of AGNs.

This is described in full detail in Fontanot et al. (2006a), where

models with quasar-triggered winds are presented. We do not use

these winds in the results presented in this paper, as the introduction

of winds influences deeply the number of bright quasars but only

modestly their host galaxies.

1 0 PA R A M E T E R S

Table 4 gives a complete list of the parameters of the model, with the

value used to compute the results given in this paper. To these the

cosmological parameters (�0, ��, �b, H0 and σ 8; see Section 1)

should be added; these are now fixed with a good accuracy, with

the exception of σ 8 whose value influences strongly the number of

galactic DM haloes at high redshift. The number of parameters is

high, and this reflects both the number of physical processes that

are included in the galaxy formation code and the level of uncer-

tainty in many of these processes. Anyway, galaxy formation is a

problem of complexity, and there is no way to reduce the number

of parameters other than hiding them by fixing them to some value.

On the other hand, the number of observables that can be used to

constrain these parameters is very high, so their values can be fixed,

with the exception of a few degeneracies. The most obvious one in

this context is the degeneracy between the energy of a SN, the star

mass per SN Mstar,SN and the thermal feedback efficiencies f th,B and

f th,D (equations 60 and 67). For this reason we only vary the effi-

ciencies, leaving M�,SN fixed and not even including the SN energy

as a parameter.

In practice, many of these parameters are fixed independently by

the results of N-body simulations (like the parameters of merging)

or by the knowledge of the IMF, and their variation within the known

uncertainties does not influence the results strongly. The remaining

parameters, labelled with a mark in the table, are then of primary

importance. Their value is fixed by comparing with a set of basic
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Table 4. Model parameters, with their value adopted in the reference model, brief description, available constraints (independently of

the model) and reference in the text. Parameters highlighted by a mark are of primary importance. Cosmological parameters are not

included.

Name Reference Comment Constraint Equation/

model Section

Mergers

fhmm 0.2 Major merger condition for DM haloes N-body Equation (10)

fgmm 0.3 Major merger condition for galaxies N-body Equation (11)

f/c 2.0/4.0 Bulge formation in mergers/disc instabilities N-body Equation (49)

! fscatter 0.1 Fraction of stars scattered at a galaxy major merger N-body Section 4.3

Halo component

! γ p 1.15 Polytropic index of the hot gas Observed Equation (13)

fshock 1.2 Shock-heating factor N-body Equations (20), (21)

! Heat cold gas YES Switch for heating cold halo gas at major mergers N-body Section 5.2

! nquench 1.0 No. of crossing times for quenching cooling Free Section 5.2

! Close hole YES Switch for closing the cooling hole Free Equation (29)

! Infall on bulge YES Switch for allowing infall on the bulge Free Equations (33), (35)

! ndyn 1.0 No. of dynamical times for infall Free Equations (31), (32)

! fwind 1.7 Energy factor to trigger a superwind Free Equations (37), (41)

fback 0.5 Fraction of superwind mass that falls back Free Section 5.5

disc structure

εlimit 0.9 Limit for bar instability N-body Equation (48)

fbar 0.5 Fraction of disc that goes to bulge Free Section 6.2

Adiabatic contraction NO Switch for adiabatic contraction Free Equation (47)

Stars and metals

M�, SN 120 M� Stellar mass per SN IMF Equations (60), (67)

frest 0.4 Fraction of restored mass IMF Equations (59), (63)

! Y 0.03 Metal yield per generation Observed Equations (77), (78)

Zpre 10−6 Metallicity due to pre-enrichment Free Section 8

! f Zej 0.5 Fraction of metals ejected to halo Free Equations (77), (78)

Star formation and feedback

! f th,D 0.5 Thermal efficiency of feedback in thin systems Free Equation (60)

! f th,B 0.5 Thermal efficiency of feedback in thick systems Free Equation (67)

! fkin 0 Kinetic energy from hot winds Free Equations (61), (67)

! σ 0 60 km s−1 Turbulent velocity of clouds Free Equations (55), (56)

! �thr 0 M� pc−2 Gas surface density threshold for star formation Observed Section 7.2

! �limit ∞ M� pc−2 Critical gas surface density for discs Free Equation (50)

! Hot kin. fb YES Switch for heating cold gas by kinetic feedback Free Equations (71)–(75)

AGN

Mseed 1000 M� Seed BH mass Theory Section 9.1

! f low J 0.003 Rate of loss of angular momentum Free Equation (79)

! f jet,0 1 Efficiency of jet feedback for a 1000 km s−1 halo N-body Equation (82)

Numerical parameters

! Mpart 109 M� Particle mass — —

�t 0.1 Gyr Numerical interval for the integration Free Section 2.2

data (Section 12), we give here a very brief list of the observable

which is most useful to fix each parameter.

fscatter: it regulates the amount of halo stars, and is fixed by requir-

ing a fraction of at least ∼20 per cent of halo stars in groups and

clusters (MH � 1014 M�).

nquench and ndyn: they regulate the star formation density, especially

at high redshift; their value is fixed by reproducing the very uncertain

star formation density at z > 4. They are nearly degenerate and their

value is especially sensitive to mass resolution.

γ p: it regulates star formation, especially at low redshift, but its

influence is modest when it is varied within the range suggested by

observations.

fwind: by regulating the energy level at which a galactic superwind

is triggered, it influences the relation between stellar and DM mass.

Heat cold gas: its switching on gives an effect similar to an in-

crease of nquench or ndyn by 1.

Close hole: when it is on, it increases cooling by a signifi-

cant amount which depends on γ p. All the parameters of the hot

halo gas and stellar feedback should be retuned if this option is

active.

Infall on bulge: it influences mostly the jet feedback, so it should

be switched on if an efficient quenching of the cooling flow is

wanted.

Y: it regulates the amount of metals produced by stars, and is fixed

by requiring a good match of galaxy metallicities.

f Zej
: it regulates the fraction of metals injected in the halo compo-

nent, and is fixed by requiring a good match of the metal enrichment

of the hot halo gas.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 1189–1219



1210 P. Monaco, F. Fontanot and G. Taffoni

f th,D: it regulates the stellar mass of small galaxies, and is fixed

by requiring a good match of the power-law part of the stellar mass

function.

f th,B, f kin and hot kin. fb: they have only a modest influence on

the results, so they are left to their reference values.

σ 0: it influences star formation in small bulges, and then the

amount of downsizing of the AGN population; it is fixed as explained

in Fontanot et al. (2006a).

�thr: it influences the mass of cold gas in local discs and its value

is suggested by observations.

�limit: it influences the history of star formation and BH accretion

in a rather subtle way; it is used in Fontanot et al. (2006a).

f low J : it regulates the BH–bulge relation at z = 0, and its value

depends on whether quasar-triggered winds are switched on; see

Fontanot et al. (2006a) for details.

f jet,0: its value is suggested to be unity by N-body simulations,

and it allows to quench cooling flows and limit the mass of elliptical

galaxies.

1 1 P O S T- P RO C E S S I N G

For each tree that is analysed, all the variables introduced in

Section 2.3, together with the disc and bulge radii and velocities,

star formation rates and accretion rate on to BHs (at the sampling

time, not averaged over the time bin), are sampled in intervals of

time �t and at the final time. All these quantities are output at the

end, together with the merger histories of galaxies, constructed as

specified in Section 3.1.

For each time bin this information is issued for all the existing

galaxies of a tree. However, this is not sufficient to reconstruct the

star formation history of a galaxy component, because disc insta-

bilities, mergers, tidal stripping and destruction events move stars

among galaxies and components; as a consequence, the sampled

star formation history of stars that are formed in a galaxy compo-

nent does not coincide with the star formation history of the stars

eventually found in that galaxy component. To reconstruct this last

quantity, all the events that transfer stellar mass from a component

or a galaxy to another are recorded and output at the end. Star forma-

tion histories are then reconstructed at the post-processing stage by

scrolling the sampled history of galaxies and moving stellar mass

among the components. This is a very quick process, that can be

done at the reading time.

The output of MORGANA (star formation histories and metallicities

of the cold gas) is then given to the spectrophotometric code GRASIL

(Silva et al. 1998), which is able to predict the spectral energy distri-

butions (SEDs) of the predicted galaxies from the UV to the radio.

This way it is possible to construct predictions for the luminosity

functions at a fixed redshift or in redshift intervals, galaxy number

counts and galaxy backgrounds. The GRASIL code has been tested

against many local and distant galaxies and is widely used by the

community; however, it introduces further uncertainties and param-

eters, so we prefer in this paper to discuss only the prediction of

MORGANA before its interfacing with GRASIL. All the details of this

interfacing will be given in Fontanot et al. (in preparation).

The star formation rates are then reconstructed in time bins of

width �t , which is set to 0.1 Gyr. This sampling is fine but for the

last bin considered, as the last formed stars, that dominate the UV,

B and FIR spectra, live for less than the sampling bin. To overcome

this difficulty, we sample also the value of bulge and disc star for-

mation rates evaluated at the end of each time bin. Then, for each

galaxy component, the time bin corresponding to the time at which

the SED is computed is split into two parts, of widths 0.09 and

0.01 Gyr. To the second part we assign a star formation rate equal

to the punctual value at the end of the bin, while to the first part we

assign a star formation rate such as the integral over the bin gives the

total amount of stars. As GRASIL resamples the star formation histo-

ries on a much finer time grid, this procedure is accurate as long as

the star formation rate does not vary strongly on time-scales smaller

than 10 Myr, which is the case for most galaxies. The accuracy of

this procedure with respect to the use of the complete star formation

rate produced by MORGANA during the integration will be shown in

Fontanot et al. (in preparation).

To compute the AGN activity of galaxies, a sampling in a time

grid is not sufficient, due to the low duty cycle of AGNs. To optimize

the statistical sampling of AGNs without inflating the output files,

we save all significant accretion events at each integration time-step;

this is done whenever the punctual value of the accretion rate is larger

than a minimal value of 1.76 × 10−3 M� yr−1, corresponding to a

bolometric luminosity of 1043 erg s−1. This very detailed output

adds only ∼10 per cent to the total disc space needed by a run. For

the computation of the luminosity function of AGNs, each of these

events is treated as an independent event of duration equal to the

integration interval of time. This procedure is explained in detail in

Fontanot et al. (2006a).

1 2 R E S U LT S

As already mentioned in Section 1, this paper is devoted to a detailed

description of the MORGANA code, so in this section we present

only some of the main results, obtained with the set of parameters

given in Table 4 unless otherwise stated. For sake of simplicity we

restrict ourselves to predictions that do not require the use of a

spectrophotometric code. In this way all the uncertainties involved

in the generation of SEDs for the model galaxies are bypassed.

All the results are based on a single 5123
PINOCCHIO run of a

150 Mpc box (h = 0.7) with the standard cosmology given in

Section 1. The particle mass is 1.0 × 109 M�; then the smallest

considered halo contains 50 particles, for a mass of 5.1 × 1010 M�,

while the mass of the smallest progenitor is 1.0 × 1010 M�. As

a comparison, the much bigger Millennium Simulation (Springel

et al. 2005) has a slightly higher particle mass, 1.2 × 109 M� for

our Hubble constant, and its merger histories are reconstructed start-

ing from 20 particles, corresponding to a smallest progenitor of

2.5 × 1010. To test the stability of the results, two more boxes have

been produced with the same number of particles and sizes of 200

and 100 Mpc, for particle masses a factor of 2.4 worse (higher) and

3.4 better (lower). The results of the stability tests are briefly shown

in Appendix B; we will highlight in the following which results are

more sensitive to mass resolution.

The MORGANA runs have been performed on simple PCs. A

150 Mpc run with nearly 2000 trees needs about 20 h on a 3-GHz

PC, the generated output is about 3 Gb. The bottleneck of the com-

putation is GRASIL, which requires about five minutes per galaxy, so

the computation of 10 000 galaxies in a mock pencil beam survey

requires about one month of CPU.

We find that the stellar mass of the typical central galaxy contained

in the smallest DM haloes at z = 0 is 3 × 108 M�, so the stellar

mass function is severely incomplete below this limit.

To limit the size of the output and the computing time, the mass

function of DM haloes is sampled by picking no more than 300

haloes per mass bin of 0.5 dex (or all haloes in the bin if they are less

than 300). The statistical distributions of galaxies are then computed

by weighting each galaxy by wtree, the inverse of the fraction of the

host DM haloes picked up in the mass bin. For each DM halo all
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expelled

hot halo gas

all stars central

Figure 6. DM haloes at z = 0: fraction of baryons in hot halo gas (red

triangles, upper left-hand panel), expelled by winds (magenta circles, upper

right-hand panel), in stars in all galaxies (green open squares, lower left-hand

panel), in stars in the central galaxy (blue crosses, lower right-hand panel).

Averages and rms of the points are shown in all panels.

galaxies and satellites are computed, so that for a given stellar mass

the satellites of large DM haloes are oversampled with respect to the

central galaxies, which are numerically dominant at all masses. This

feature shows up when galaxy properties are reported for samples

of model galaxies, like in the Tully–Fisher relation: at fixed stellar

mass, satellite galaxies with a low weight wtree are more numerous

in the plot than central galaxies with a high wtree. We then further

sparse-sample the satellites as follows: we compute the average

stellar mass of central galaxies as a function of the DM halo mass,

then assign to each satellite a weight wgal equal to the ratio between

the wtree of the average DM halo hosting a central galaxy with the

same stellar mass and the wtree of the host DM halo. We then select

the satellite with a probability equal to 1/wgal. In this way we obtain

a roughly constant number of galaxies per logarithmic interval of

stellar mass.

Fig. 6 gives, for each selected DM halo evolved to z = 0, the

fraction of baryons that are found in hot halo gas, in stars of all

galaxies (but not in the halo), in stars of the central galaxy, and

the fraction of baryons ejected by winds and not fallen back. These

clearly do not exhaust the list of baryonic components (halo stars

and cold gas components are excluded here), so these fractions do

not add up to 1. However, this figure helps in showing a number of

important features. There is a clear transition at a DM halo mass

range of 1012–1013 M�: smaller haloes lose most of their baryons

by ejecting them to the IGM and their stellar content is dominated by

the central galaxy, while larger haloes retain most of their baryons

as hot gas and have a small fraction of stars (∼20 per cent) in the

central galaxy. In both cases the fraction of stars (both total and in

the central galaxy) declines quickly with increasing or decreasing

mass, while a maximum is reached at 1012 M�. All these features

reproduce nicely the trends suggested in the seminal papers of galaxy

formation (see e.g. White & Rees 1978 or Dekel & Silk 1986): small

haloes are evacuated by winds driven by SNe, while in large haloes

Figure 7. Stellar mass function of galaxies at z = 0 (continuous black line),

compared with the results of 2dF+2MASS (Cole et al. 2001) and SDSS (Bell

et al. 2003). The dashed red and dotted blue lines give, respectively, bulge-

dominated and disc-dominated galaxies, while the dot–dashed magenta line

refers to a model without quenching of the cooling flows by AGN jets

(f jet,0 = 0).

the large cooling time (aided by AGN feedback) prevents most gas

from cooling. As a further element, it is worth noting the presence

of many Milky Way-sized haloes with almost no hot gas, in nice

agreement with the lack of X-ray emitting around our Galaxy.

The trends of decreasing efficiency of star formation in smaller

and larger haloes than 1012 M� are needed to produce the observed

low-luminosity slope and high-luminosity cut-off of the galaxy LFs.

Fig. 7 shows the predicted stellar mass function of galaxies, com-

pared with the data by the 2dF + 2MASS (Cole et al. 2001) and

SDSS (Bell et al. 2003) surveys. The low-mass slope is nicely repro-

duced (though the result is sensitive to resolution, see Appendix B),

even in the slight steepening below 1010 M�. The high-mass cut-off

is not strong enough, and the biggest ellipticals are too massive by

at most a factor of 2; however, this excess may be connected, as

proposed by Monaco et al. (2006), to the construction of the diffuse

stellar component of galaxy clusters, and would be fixed by a proper

modelling of the scattering of stars during mergers (Section 4.3); this

work is in progress. We also report in the figure the resulting mass

function without AGN feedback, to show that the quenching of the

cooling flow by AGN jets decreases significantly the discrepancy

with observations.

Fig. 7 shows also the stellar mass function of bulge- and disc-

dominated galaxies (these are very similar to the mass functions of

bulges and discs). In line with what is observed, bulges dominate

at large masses, while discs are more abundant at small masses.

However, as noticed also by Croton et al. (2006), the mass function

of bulges does not have a broad peak at ∼1010–1011 M�, as shown

by the luminosity function of ellipticals; there is a definite excess of

small bulges. This is likely connected to the excess in the predicted

number density of 1010 M� galaxies at z ∼ 1 reported by Fontana

et al. (2006), a problem shared by many galaxy formation models.

This point will be deepened in Fontanot et al. (in preparation).

Fig. 8 shows the prediction of the star formation rate density as a

function of redshift. The data have been collected and homogenized

by Hopkins (2004). The prediction is consistent with the data, with

some possible underestimate at z ∼ 1. In particular, a very broad peak
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Figure 8. Star formation rate density as a function of redshift, compared

with the data compiled and homogenized by Hopkins (2004). Points denote

star formation estimates based on rest-frame UV (blue squares), [O II] (green

triangles), Hα and Hβ (magenta circles), X-ray, FIR and submm (red stars).

of star formation is predicted to be present at z ∼ 3, in agreement with

the estimates based on submm counts. The level of star formation

is still high at z ∼6, only a factor of 2 lower than the peak value;

however, this prediction depends sensitively on the mass resolution.

Most of this star formation takes place in discs, triggered by the

strong cooling flows at high redshift, while mergers dominate the

strongest starbursts; this will be deepened in Fontanot et al. (in

preparation).

Fig. 9 shows the cosmic stellar mass density as a function of

redshift. Though this quantity is related to the cosmic star formation

rate (it is simply its integral in time), it is compared with a completely

different set of data (Brinchmann & Ellis 2000; Cole et al. 2001;

Cohen 2002; Dickinson et al. 2003; Fontana et al. 2003; Drory et al.

2004; Fontana et al. 2004; Gwyn & Hartwick 2005). The data in

Gwyn & Hartwick (2005)

Drory et al. (2004)

Cole et al. (2001)

Dickinson et al. (2003)

Cohen (2002)

Brinchmann & Ellis (2000)

Fontana et al. (2003)

Fontana et al. (2004)

Figure 9. Stellar mass density as a function of redshift, compared with

the data by Brinchmann & Ellis (2000); Cole et al. (2001); Cohen (2002);

Dickinson et al. (2003), Fontana et al. (2003, 2004), Drory et al. (2004),

Gwinn & Hartwick (2005). The data are not homogenized for the different

sample completeness.

this figure are not homogenized for the different mass limits, so

each point should be considered as a lower limit. The agreement

with data is again good from z ∼ 4 to 0. A more refined analysis of

the build-up of the stellar mass is reported in Fontana et al. (2006)

and Fontanot et al. (in preparation).

Fig. 10 (left-hand panel) shows the baryonic Tully–Fisher rela-

tion for the disc-dominated galaxies, where disc velocities VD are

computed at the optical radius (3.2RD) and MD is the total disc mass.

This relation is compared with that obtained from the universal rota-

tion curve (Persic et al. 1996, updated by Yegorova & Salucci 2006);

the intrinsic scatter around this relation is reported by the authors to

be ∼0.2 dex. As a first point, there is a tail of rapidly spinning discs

that are not seen in the data. These discs are formed at high red-

shift (when DM haloes were denser and discs more compact), then

become satellites so that no further infall on the disc takes place.

Consequently, they are compact and gas-poor, and thus can hardly

be classified as spirals. This is demonstrated in the figure, where all

objects with a gas fraction lower than 1 per cent are denoted as small

dots; most if not all outliers are then removed by applying this se-

lection. As a second point, the gas-rich discs follow a Tully–Fisher

relation parallel to the observed one but with a higher velocity by

0.1 dex, or 25 per cent, in VD. (Notably, galaxies follow the same

Tully–Fisher relation independently of their surface brightness.) We

have verified that no realistic combination of feedback parameters

leads to a better zero-point of the relation. This disagreement is

more likely related to the shape of the halo; for instance, Mo & Mao

(2000) suggest that a concentration as low as cNFW = 4 is required to

fit the Tully–Fisher relation. To test this hypothesis we then scaled

all concentrations by a constant factor so as to take a value of 4

for a 1012 M� halo at z = 0. The resulting relation (Fig. 10, right-

hand panel) shows a much better agreement with the observed one

(this change does not affect much the other galaxy properties, but

ellipticals result larger and less dense as well). We then conclude

that the disagreement in the zero-point of the baryonic Tully–Fisher

relation is likely due to the inner profile of the DM halo more than

to feedback. As a third and final point, the scatter around the Tully–

Fisher relation is found to be ∼0.25 dex, possibly higher than what

is suggested by data.

It must be stressed that this model was run without the compu-

tation of adiabatic contraction of the halo (Section 6.1). We have

verified that this further process, besides slowing down the compu-

tation significantly, makes the discs slightly more compact, without

influencing drastically the other results; in fact, taking into account

the presence of a bulge leads to a significant contraction in many

discs, so that the adiabatic contraction of the halo does add much to

this effect.

Fig. 11 shows the surface densities of cold gas versus star forma-

tion rate for discs and bulges, compared with the Schmidt–Kennicutt

law (Kennicutt 1998). By construction, bulges stay exactly on the

average relation, while discs follow the star formation time-scale

of equation (58), which, as anticipated, gives a relation compatible

with the observed one in virtue of the correlation between cold gas

fraction and surface density. The agreement is very good both in

terms of zero-point (apart from a marginal underestimate that could

be easily fixed by a better tuning) and in terms of scatter.

Fig. 12 shows the prediction of the mass function of H I at z = 0,

compared with that obtained from the HIPASS sample (Zwaan et al.

2003). The statistical error of the observational mass function (well

fit by a Schechter function) is so small for this sample that we do

not even report it in the figure; conversely, the transformation from

H I to total cold gas mass is rather uncertain. Following Fukugita

& Peebles (2004), the H I and molecular gas densities at z = 0
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Figure 10. Baryonic Tully–Fisher relation for disc-dominated galaxies at z = 0, compared with the relation obtained from the universal rotation curve (Persic

et al. 1996; Yegorova & Salucci, in preparation), shown as a shaded area. Dots and circles correspond, respectively, to discs with a gas fraction smaller and

higher than 1 per cent. Continuous lines give the average (thick line) and average± rms (thin lines) of the circles. Left-hand panel: standard model; right-hand

panel: model with concentration scaled to cNFW = 4 for 1012 M� DM haloes at z = 0.

Figure 11. Schmidt–Kennicutt law for the disc (blue triangles) and bulge

(red circles) components. The shaded area gives the observed relation re-

ported by Kennicutt (1998).

amount to �H I = (3.5 ± 0.8) × 10−4 (Zwaan et al. 2003) and

�H2
= (1.6 ± 0.4) × 10−4 (Keres, Yun & Young 2003), so that,

taking into account the abundance of helium (another 1.38 factor)

the fraction of cold gas results a factor of 2 higher than that of H I; this

is the conversion factor used in Fig. 12. With the standard choice of

parameters MORGANA does not reproduce this mass function either

at small or at large masses. In Appendix B we show that the cut-

off of this function is remarkably sensitive to mass resolution and

decreases with decreasing particle mass, so that at this stage we

decide not to give credit to the discrepancy at large masses. At

smaller masses, we find that the amount of gas is sensitive both to

the threshold for star formation �thr introduced in Section 7.2 and to

Figure 12. Mass function of H I gas (black continuous line), compared with

the analytic fit of the results of the HIPASS sample (Zwaan et al. 2003;

green thick line), assuming that the correction for helium and molecular gas

amounts to a factor of 2. The statistical error of the observed mass function

is very small. The dashed red and dot–dashed blue lines give the results of

models with a threshold for star formation (�thr = 10 M� pc−2); in the blue

dot–dashed model DM halo concentrations cNFW are scaled so as to assume

a value of 4 for a 1012 M� halo at z = 0.

the assumed star formation law. Given the good reproduction of the

Schmidt–Kennicutt law (even with a marginal underestimate of the

star formation rate, which would imply an increase of gas masses),

the discrepancy in the amount of cold gas cannot be due to an error

in the star formation time-scale at a given �cold,D, but can be due to

an error in the size of discs, which influences the value of �cold,D

and then of t�D,. Such an error is also suggested by the discrepancy,

reported above, in the zero-point of the baryonic Tully–Fisher. We
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Figure 13. Evolution of the cold gas density, compared with the HIPASS

point at z = 0 (with and without the correction for helium and molecular gas)

and to estimates of H I gas density from DLAs, obtained by Péroux et al.

(2005), Rao et al. (2005) and Prochaska et al. (2005). Model lines are as in

Fig. 12.

then show two more models in Fig. 12, both with �thr = 5 M� pc−2,

the second one with concentrations scaled to take a value cNFW =
4 for a 1012 DM halo at z = 0. Clearly, adding a threshold for star

formation helps in increasing the amount of cold gas (under the

assumption that the correction for the H I gas given above applies

also beyond the threshold for star formation) but cannot solve the

discrepancy, while the cNFW = 4 case leads even to a satisfactory

prediction of the low-end of the gas mass function. We conclude that

the mass function of cold gas gives a very important fine constraint

to the model, and that it gives further support to the idea that the

NFW profile of DM haloes leads to too compact discs. However, the

uncertainty in the relation between H I and cold gas must be better

taken into account before reaching strong conclusions.

Fig. 13 shows the evolution of the cold gas density, compared with

the HIPASS point (shown with and without the correction for molec-

ular gas and helium) and the data from damped Lyman-alpha (DLA)

systems (Péroux et al. 2005; Prochaska, Herbert-Fort & Wolfe 2005;

Rao et al. 2005), to which no correction has been applied. The same

three models as in Fig. 12 are shown. All the models show the

same trend of a broad peak at z ∼ 2–4 and a decrease by a fac-

tor of ∼5 at z < 2; the cNFW = 4 model gives a remarkably high

normalization. The data themselves are characterized by large error

bars and by a discrepancy between the Prochaska et al. (2005) and

Péroux et al. (2005) data points at z ∼ 2.5. No strong conclusion

can then be drawn from this figure, apart from a rough qualitative

agreement.

Fig. 14 shows, for the standard model, how cold gas is distributed

in disc-dominated or bulge-dominated galaxies. Regarding the latter,

while small ellipticals have a low gas content, the most massive

objects have a significant gas load; at variance with what appears

in the plot, they do not dominate the high end of gas mass function

because they are hosted with the rare but well sampled massive DM

haloes. This excess of cold gas does not contribute much in terms

of mass, but makes these galaxies too blue, thus highlighting that

our quenching of the cooling flow by AGN feedback is not strong

enough. This point will be addressed in more detail in a forthcoming

paper.

Figure 14. Gas content of disc-dominated (blue triangles) and bulge-

dominated (red triangles) galaxies as a function of stellar mass.

Figure 15. Stellar mass versus stellar surface density for disc-dominated

(blue triangles) and bulge-dominated (red circles) galaxies in the model.

The thick and thin continuous lines give the average and average ± rms of

the galaxies. The shaded area reports the observational result of Kauffmann

et al. (2003).

Fig. 15 shows the galaxies in the stellar mass–surface density

plane. Spiral discs and bulges tend to occupy different regions of

the plane; the scatter is however so strong that, as observed, no

clear bimodality emerges from the distribution of these galaxies.

The region occupied by SDSS galaxies in this plot (Kauffmann

et al. 2003) is highlighted in the figure. A decrease of the surface

brightness at masses <1010 M� is obtained, in good agreement with

the SDSS data; however, model galaxies are much more scattered.

Fig. 16 shows the bulge-dominated galaxies in the stellar mass–

RB plane, compared with the observed relation obtained from the

data of Marconi & Hunt (2003), RB = 4.9 (MB/1011 M�)0.65 kpc

(see also Monaco & Fontanot 2005), with a scatter of 0.3 dex. The

data lie nicely within the observed range, with some flattening at

small masses which is consistent with the findings of Graham et al.

(2006). We do not show a prediction of the fundamental plane at this
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Figure 16. Half-mass radii of elliptical galaxies as a function of stellar mass.

Points with error bars give the average and rms in bins of the model galaxies.

The lines give the average and rms values of the data obtained from Marconi

& Hunt (2003).

Figure 17. Left-hand panel: metallicity of bulge-dominated (red points) and

disc-dominated (blue triangles) galaxies, compared to the average and rms

range of data of SDSS galaxies (Gallazzi et al. 2005, black dashed lines)

and of the NOAO survey cluster ellipticals (Nelan et al. 2005, green dotted

lines). Right-hand panel: predicted metallicity of the hot halo component;

in this panel, the continuous thick and thin cyan lines give the average and

rms of the points.

stage, because the virial theorem is implicit in our relation between

mass, radius and velocity dispersion, and the computation of M/L
ratios need a spectrophotometric code to be computed.

Fig. 17 shows the predicted metallicity of bulges, discs and hot

halo gas. Elliptical galaxies show a mass-metallicity relation that

steepens at masses smaller than 1110 M�, spirals show a similar

though weaker trend. These metallicities are compared with the re-

sults of Nelan et al. (2005), relative to the cluster elliptical galaxies

of the NOAO fundamental plane survey, and Gallazzi et al. (2005),

relative to SDSS galaxies. Both data sets suggest an increase of

metallicity with stellar mass, which confirms our qualitative predic-

tion, but they differ remarkably in the normalization. This reflects

the intrinsic difficulties in estimating ages and metallicities in large

samples of galaxies. Taking this into account, we notice that the

region of masses lower than ∼3 × 1010 M� and metallicities lower

than 0.005 is populated by SDSS galaxies (presumably by disc-

dominated objects) but not by our model. Taking this result at face

value, these data suggest that there may be a need of feedback in

small-mass discs. In Fig. 17 we also show the predicted metallicity

of hot halo gas, which is enriched to a level of roughly Z�/3 in

clusters, which raises in galaxy groups and then is dominated by

scatter at smaller DM halo masses (which are also almost devoid of

hot gas). This is in qualitative agreement with the observed trend

(Baumgartner et al. 2005) of an increase of metallicity from galaxy

clusters to groups of 2–3 keV (∼1014 M�), possibly followed by a

decrease at smaller masses.

1 3 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented and described in detail the code MORGANA for the

formation and evolution of galaxies and AGNs. The most relevant

features of MORGANA have been mentioned in Section 1: it attempts,

through its original modelling of cooling, star formation, feedback,

galactic winds and superwinds, AGN activity and AGN feedback,

to move from a phenomenological description of galaxy formation,

based on simple scalings with the properties of the host DM halo,

towards a fully physically motivated one. The numerical integration

of the mass, energy and metal flows allows a wide set of physical

processes to be straightforwardly implemented, and the multiphase

description of the interstellar and intra-cluster media, although used

only in a limited way, is a step forward towards a more realistic

description of the complex physics involved.

Despite many significant technical differences, the predictions of

MORGANA at z = 0 are in line with that of the other semi-analytical

or N-body models: most of the figures shown in Section 12, will

be no real surprise for most experts of galaxy formation. Besides,

a qualitative comparison of our results with the N-body ones of

Tornatore et al. (2003) has shown in many cases the same trends,

as for instance the formation of too massive ellipticals in clusters or

the inability of stripping to produce a sufficient number of halo stars

(see also Monaco et al. 2006). Similarly, the hidden dependence of

the results on mass resolution and the lack of a proper convergence

is shared by the two methods. This implies that the field is reaching

an interesting level of maturity, so that an increase in the level of

sophistication in these models is justified.

In Section 1 we stated that we do not regard this model as a

‘theory of everything’ for galaxies, but simply as a powerful tool to

understand the complex nature of galaxies and to bridge in a realistic

way the physical processes in play with the observations that can

constrain them. It is then important to focus on the discrepancies

with observations found in this paper, and to the insights on the

physical processes that they provide.

The exponential cut-off of the luminosity function is only roughly

reproduced, which implies that the quenching of the cooling flow

by the AGN is not well modelled; a stronger indication is given by

the excess of cold gas in large ellipticals. This is no surprise given

the poor level of understanding of this process. Our quenching is

performed by allowing gas to cool, form stars and accrete on to the

BH, at variance with the choice of switching cooling off whenever

some fiducial criterion is satisfied, like, for example, in Hatton et al.

(2003), Bower et al. (2006) or Croton et al. (2006), a choice that

leads to better fits to the luminosity functions and correct red colours

for the most massive galaxies. Besides, if the build-up of massive
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galaxies by consecutive mergers is slowed down by the creation

of the diffuse stellar component in galaxy clusters, as proposed by

Monaco et al. (2006), then the high end of the stellar mass func-

tion (but not galaxy colours) may be determined by gravitational

processes more than by AGN feedback. This suggests that the long-

known cut-off of the stellar mass function may still give surprises

in the future.

Another well-known discrepancy arises in reproducing the zero-

point of the baryonic Tully–Fisher relation. Our results support

strongly the idea that this problem is not due to an unsuitable mod-

elling of feedback but to the shape of the inner density profile of DM

haloes; the cusped NFW haloes produce discs that are too compact

(with VD values higher by 25 per cent), while by scaling the halo

concentration so as to assume the low value cNFW = 4 for a 1012 M�
DM halo at z = 0, as suggested by Mo & Mao (2000), it is possi-

ble to recover the zero-point of the Tully–Fisher relation. Besides,

the formation of galaxy discs is based on the (reasonable but still

not fully demonstrated) assumptions of conservation of angular mo-

mentum and formation of exponential discs, and our model neglects

important problems related to the distribution of angular momen-

tum within the DM haloes. Given the complexity of this topic, it

is remarkable that the observed Tully–Fisher relation is wrong by

only 0.1 dex under the simplest assumptions.

The discrepancy in disc sizes is reflected also in the mass func-

tion of cold gas; model disc galaxies have correct stellar masses

and stay on the correct Schmidt–Kennicutt law, but show a deficit

of cold gas mass. This lack is partially fixed by inserting a thresh-

old for star formation, but only the formation of less compact discs

(hosted in flatter DM haloes) can solve the discrepancy. Our anal-

ysis also shows the potentiality of using the mass function of cold

gas in galaxies to test galaxy formation models, although the uncer-

tainty in the relation between H I and total cold gas hampers strong

conclusions.

Another point of disagreement with data is given by the excess

of small bulges at z = 0. This is related to the excess of 1010 M�
galaxies at z�1 (Fontana et al. 2006), and to the intrinsic difficulty of

‘downsizing’ the AGN population (Fontanot et al. 2006a). The lack

of low-metallicity discs may add to this evidence. These connected

problems point to some missing feedback sources that acts in disc-

dominated galaxies at high redshift (those that later merge to form

bulges).

All these discrepancies point to the need of a deeper understanding

of the complex process of galaxy formation, that will necessarily

need a focus on the details of the various processes involved. In this

regard, observations of larger and larger samples of galaxies will

need to be complemented by detailed observations of objects where

feedback is at work. To bridge together the two sets of evidences it

will be necessary to use galaxy formation models that, on the one

hand, are able to generate predictions for large samples of objects

and, on the other hand, contain a sophisticated enough treatment

of gas dynamics to make predictions on the detailed properties of

galaxies. MORGANA is a contribution in this direction.
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A P P E N D I X A : M E R G I N G A N D D E S T RU C T I O N
T I M E S F O R G A L A X I E S

The merging and destruction times are computed using the phys-

ically motivated analytic fits (accurate to ∼15 per cent) of Taf-

foni et al. (2003) to the merging and destruction times found using

N-body simulations and analytical models. We use here a version

of the analytic fits that differs slightly from the one proposed in that

paper in the values of the fitting parameters.

Let the merging haloes have mass, circular velocities, virial radii

and concentrations, respectively, MH, VH, rH, cH (main halo) and

MS, VS, rS, cS (satellite). Let f sat = MS,0/MH be the ratio between

the initial mass of the satellite and the halo mass (we recall that

the halo mass includes the satellite), and let ε and xc be the orbital

parameters of the satellite (see Section 4.1). In the case of a rigid

satellite that suffers no mass-loss, the dynamical friction time (the

time required by an orbit to decay) is

τrigid = 0.46
r 2

HVH

G MS,0

(1.7265 + 0.0416cH)
x1.5

c

ln (1 + 1/ fsat)
(A1)
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while for a live satellite, that is, a satellite that suffers significant

mass-loss by tidal stripping, the dynamical friction time is

τlive = r 2
HVH

G MS,0

[
B f 0.12

sat + C f 2
sat

]
× [

0.25 (cH/cS)6 − 0.07(cS/cH) + 1.123
]

× [0.4 + (ε − 0.2)Q] , (A2)

where

B = −0.0504 + 0.3355xc + 0.3281x2
c , (A3)

C = 2.151 − 14.176xc + 27.383x2
c , (A4)

Q = 0.9 + 108 [ fsat − 0.0077/(1 − 1.08xc) − 0.0362]6(
12.84 + 3.04xc − 23.4x2

c

)
.

(A5)

The general expression for the dynamical friction time is obtained

by interpolating between the two expressions. For f sat > 0.1:

τdf = τrigid; (A6)

for 0.08 < f sat � 0.1:

τdf = τrigid

(
fsat − 0.08

0.02

)
+ τlive

(
1 − fsat − 0.08

0.02

)
; (A7)

for 0.007 < f sat � 0.08:

τdf = τlive; (A8)

for f sat � 0.007:

τdf = max
(

2.1τrigidε
0.475

[
1−tanh

(
10.3 f 0.33

sat −7.5xc

)]
, τlive

)
. (A9)

For the destruction times we follow closely appendix B of Taffoni

et al. (2003).

A P P E N D I X B : N U M E R I C A L S TA B I L I T Y

In this appendix we show how some results are sensitive to the mass

resolution of the merger trees. This is not to be considered as a

complete convergence study, but only as a first test of the robustness

of the results. Fig. B1 gives the stellar mass function, star formation

density and cold gas mass function for the three boxes introduced

in Section 12 and for the same set of parameters given in Table 4.

The following conclusions can be drawn.

(i) The model roughly converges in predicting the stellar content

of bright galaxies, but does not for small galaxies. In particular,

at increasing resolution (decreasing particle mass) the stellar mass

function gets steeper at the low-mass end and, as a consequence,

lowers at the knee.

(ii) The star formation density apparently converges at lower red-

shift, but gets increasingly large at z � 2. The main reason for the

low-redshift convergence is that, to mimic the effect of reionization

(following Benson et al. 2002; see Section 2.6) cooling is quenched

in haloes with circular velocity larger than 50 km s−1. The smallest

sampled progenitor overtakes this limit at redshifts higher than 1,

2.8 and 7.5 for the three runs, in order of decreasing particle mass.

This means that each box is missing star-forming haloes at redshift

higher than that limit, and explains why convergence in the star

formation density is not visible in the figure.

Figure B1. Stellar mass function (upper panel; see Fig. 7), star formation

density (middle panel; see Fig. 8) and cold gas mass function (lower panel;

see Fig. 12) for galaxies in the three runs with particle mass 3.0 × 108 M�
(blue dot–dashed lines), 1.0 × 109 M� (red dashed line) and 2.4 × 109 M�
(black continuous line).

(iii) From the stellar mass function and star formation rate, it

is clear that the excess of small-mass galaxies noticeable for the

highest resolution run is connected to the excess of star formation at

high redshift, so that the exceeding dwarf galaxies will be very old

objects. This unwanted feature is clearly connected to the excess of

galaxies with stellar mass �1010 M� at z ∼ 1 found by Fontana et al.

(2006) by comparing models (including MORGANA) to the results
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of the GOODS-MUSIC survey, and to the excess of small bulges

visible in Fig. 7. Clearly, a source of feedback, which would limit

the formation of dwarf galaxies at z > 1, is missing, and this lack is

more and more evident when the particle mass decreases.

(iv) With the low-Vc cut-off, convergence is reached in the star

formation rate at z < 1, because only the run with the largest particle

mass shows higher star formation density and a tail of galaxies

more massive than 3 × 1012 M�. This is related to the efficiency of

the quenching of the late cooling flows by radio-loud AGNs. This

demonstrates that our self-consistent quenching needs a particle

mass not larger than 109 M�. In case of poor mass resolution it is

possible to apply a procedure similar to Croton et al. (2006) and

Bower et al. (2006) to force the quenching of the cooling flow.

In this case, whenever a cooling flow is present it is assumed that

a fraction of that flow would immediately accrete on to the BH

(subject to the Eddington rate) and release energy to the hot halo

phase. Whenever this ‘fiducial’ energy is higher than that lost by

cooling, quenching is switched off. This ‘forced cooling’ procedure

is clearly less physical than that described in Section 9.2, and for a

sufficiently small particle mass it gives a slightly stronger quenching

of the cooling flows, but it can be considered as a rough numerical

trick to achieve a good level of quenching when mass resolution

is poor. This forced quenching procedure is used in Fontanot et al.

(2006a).

(v) The high-mass cut-off of the cold gas mass function is the

most sensitive prediction to mass resolution. We do not find any hint

of convergence for this quantity at z = 0, despite the star content of

the same galaxies is convergent. On the other hand, the low-mass

tail of the same distribution is rather stable.

We can then conclude that the model does not really converge with

the resolution, and that convergence at large masses is obtained by

using the motivated recipe of Benson et al. Some relevant ingredient,

able to hamper star formation in small-mass (but relatively high

circular velocity) galaxies at high redshift, is still missing.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 1189–1219


