Cluster feeding filaments are the "Paths of Glory" of galaxy evolution

Andrea Biviano, INAF/Osservatorio Astronomico di Trieste

in collaboration with: Dario Fadda, Louise Edwards, NASA Herschel Science Center Florence Durret, Institut d'Astrophysique de Paris Francine Marleau, Toronto University

Why am I bo(the)ring you with this seminar today?

Cluster feeding filaments are the "Paths of Glory" of galaxy evolution

Andrea Biviano, INAF/Osservatorio Astronomico di Trieste

in collaboration with: Dario Fadda, Louise Edwards, NASA Herschel Science Center Florence Durret, Institut d'Astrophysique de Paris Francine Marleau, Toronto University

THE MOST EXPLOSIVE MOTION PICTURE IN 25 YEARS!

"PATHS

Short the whole dozen regiment and now the Colonel had be do 217

-arry RALPH MEENER - ADULPHE MENUOU -s more money area were and second second second second states and and and and second s

KIRK DOUGLAS Cluster-feeding filaments are the "Paths of Glory" of galaxy evolution:

galaxies running towards the enemy (the hostile cluster environment) live an ephemeral glory as they undergo bursts of star-formation, but the bursts consume their gas and they end-up "red and dead" in clusters

THE MOST EXPLOSIVE MOTION PICTURE IN 25 YEARS!

"PATHS

Short the whole dozen regiment and now the Colonel had be do 217

-arry RALPH MEENER - ADULPHE MENUOU -s more money area were and second second second second states and and and and second s

KIRK DOUGLAS

 Introduction: galaxy properties in clusters (focus on IR, λ>4 μm, observations)

 The A1763 supercluster: observations, membership, galaxy stellar masses, M_{*} and IR luminosities, L_{IR}

The A1763 IR luminosity function: methodology, environmental dependence, cmp with the literature

Summary, Discussion and Perspectives

Introduction: galaxy properties in clusters

The most striking characteristics of the cluster galaxy population: its morphology mix

Field

Cluster

Regular trend of morphology change with density: Morphology-Density Relation

log(local density)

(Dressler 80)

In clusters, density decreases with increasing radius: Morphology-Radius Relation

radius, i.e. clustercentric distance

(Whitmore+93)

Color-radius relation in clusters

The CIRS cluster sample (Rines+Diaferio 06)

clustercentric distance

The Color-Magnitude Relation

Color-Magnitude Relation evolution with $z \Rightarrow z_f \ge 2$

(De Lucia+07)

Cluster Galaxies Luminosity Function

Number of galaxies per magnitude bin

The faint end of the LF of red sequence galaxies forms at low-z

Red-galaxy luminosity functions for two cluster samples, <z>=0.1 & 0.5

(Stott+07)

The fraction of Blue galaxies in clusters, $f_B \uparrow with z$: the "Butcher-Oemler" effect

(Butcher & Oemler 84)

fraction of blue galaxies

The fraction of Red galaxies in clusters, $f_{red} \downarrow with z$: the "Butcher-Oemler" effect

fraction of red galaxies

(Li, Yee, Ellingson 09)

The Morphology-Radius Relation at z~1:

still there, but less S0, more S; no change in E fraction

(Postman+05)

Brightest galaxies in two z~1 clusters (Postman+05)

Most morphology evolution occurs at z<0.5

(Desai+07)

Galaxy colors and morphologies are related...

...but they are not the same property!

Normal S

Passive spectrum, blue disk

Passive spectrum red disk

(Moran+07)

Explore galaxy evolution vs. environment and redshift using a fundamental galaxy property:

the mass of its stellar component, M_{\star} , and its production rate, the Star Formation Rate, SFR = dM_{\star}/dt "Special" observational requirements:

M★:

Near-IR observations (J, H, K bands)

SFR:

Total IR luminosity (L_{IR}) from Mid- and/or Far-IR observations ($\lambda > 4 \mu m$) + Kennicutt's (1998) relation: SFR [M_o/yr] = 1.7 10⁻¹⁰ L_{IR}/L_o

Mid- and Far-IR observations from space

ISO

SPITZER

HERSCHEL

The distribution of galaxy L_{IR} (IR LF) in nearby galaxy clusters is "universal"

IR-emitter number density

The IR LF in clusters changes with distance from the cluster center

Higher ratio of bright/faint IR-emitters at large radii

(Bai+06)

Higher fraction of high-SFR galaxies at larger radii

Fraction of $M_R \le -20.15$ galaxies which have $SFR \ge 0.2 M_{\odot}/yr$

(Bai+09)

Group IR LF vs. cluster IR LF

Evolution of the cluster IR LF

Higher density of IR-emitters & higher fraction of bright/faint emitters

in higher-redshift clusters

(Bai+09)

IR luminosity

The fraction of IR-emitters in clusters ↑ with z: the "IR Butcher-Oemler" effect

01:14:0

01:18:58

00.39.29

Mid & Far-IR (4-160 μ m) Spitzer observations of 3 galaxy clusters at z~0.2 (Fadda + 08; Edwards + 10) Mid & Far-IR (3-160 μ m) Spitzer observations of 3 galaxy clusters at z~0.2 (Fadda + 08; Edwards + 10)

Extensive follow-up observations of one of them, A1763

Follow-up observations of A1763:

r', J, H, K_s photometry at Palomar 200inch (LFC + WIRC)

Follow-up observations of A1763:

r', J, H, K_s photometry at Palomar 200inch (LFC + WIRC) SDSS u', g', r', i' photometry also available spectroscopy (805 redshifts) at WIYN & TNG

GALEX UV photometry 1.4 GHz VLA observations XMM-Newton archive data

+ MMT (courtesy E.Egami)

A1763 X-ray surface brightness distribution

The X-ray surface brightness distribution is elongated like the galaxy distribution

The cD galaxy is a WAT radio galaxy, the angle between the radio lobes is bisected by the line tracing the cluster elongation

Abell 1763, zooming out

AIM: determine the galaxy IR luminosity function in different regions of the supercluster ⇒ galaxy star formation = f(environment)

> ...to achieve this aim: Select sample of IR emitters members of the supercluster

Base the selection on our 24 μm survey, 80% complete at 0.2 mJy [deeper than 70 and 160 μm, emission at 24 μm closely related to recent star formation]

Membership selection: spectroscopic sample

Use the algorithm of Mamon, AB, Murante (2010): 179 supercluster members found

Membership selection: photometric sample

Use the SDSS photometric redshift estimates, check vs. spectroscopic redshifts, select z_p-range such as to maximize Completeness & Purity (1-P)²+(1-C)²: another **346** supercluster members found To determine IR LF we must determine the galaxy total IR luminosities (L_{IR}) ⇔ Star Formation Rates (SFR) via Kennicutt's (1998) relation SFR [M_☉/yr] = 1.7 10⁻¹⁰ L_{IR}/L_☉

It is also useful to determine the galaxy stellar masses (M★) ⇒ specific SFR, sSFR [yr-1] = SFR/M★

Fit galaxy Spectral Energy Distributions (SEDs) with model templates:

for LIR:

Use GRASIL (Silva+98) & Polletta+07 models and integrate best-fit model SEDs from 8 to 1000 μ m

for M_{\bigstar} :

Use models of Maraston 05, correct for absorption (Calzetti+00) with E(B-V) free to vary, and restrict the fit to λ <4 μ m

Example of full SED template fit:

61 templates (GRASIL & Polletta's models) in 5 broad classes: ETG, SFG, SBG, PSBG, AGN

Example of restricted ($\lambda < 4 \mu m$) SED template fit:

Extinction E(B-V) is a free parameter, varying from 0 to1 mag, no dust emission in model \Rightarrow stop fit at $\lambda < 4 \ \mu$ m

8 —1000 μ m SED integral \rightarrow L_{IR} estimate

 ≠ direct estimate of L_{IR}
from 24 µm monochromatic luminosity
(Rieke+09, Lee+10)

> (different symbols are different SED classes: black crosses=ETG, green circles=SFG, blue squares=SBG, pink diamonds=PSBG, red X's=AGN)

The IR Luminosity Function of A1763: methodology, environmental dependence, cmp with the literature

By counting the number of supercluster members in bins of L_{IR} we do **not** obtain the IR luminosity function (IR LF), *because our sample is neither complete nor pure (contamination from non-members).*

Therefore we evaluate: Completeness = C(f₂₄) and Purity = P(f₂₄) for the spectroscopic sample & the full (spectroscopic+photometric) sample.

Then we correct the 24 μ m galaxy counts to get the pure & complete (P \rightarrow 1, C \rightarrow 1) IR LF

Completeness and Purity corrections; several terms to consider:

- 24 μ m sources
- sources with z and/or z_p

• members

(different corrections for sources with z and sources with z_p but without z)

The IR LF of the A1763 supercluster

Open/filled symbols = uncorrected/corrected counts Red/blue symbols = spectroscopic only/full sample

The contribution of the different SED classes to the IR LF:

AGNs contribute very little (independent confirmation from the analysis of the radio and X-ray data, Edwards+10) → IR LF is closely related to dust-reprocessed stellar emission

What is the effect of the environment?

We identify 3 environments: core (<r₅₀₀) filaments outskirts (= the whole field except the core and the filaments)

What is the effect of the environment?

LIRGs (L_{IR}>10¹¹ L_☉) are located mostly in the region of the filaments

They do *not* have high sSFR (∝ circle size)

Each LF is corrected for *in*Completeness and *in*Purity

The densities of IR-emitting galaxies, n_{IR} , are normalized by the densities, n_r , of normal, r-selected galaxies in the same regions

The specific-SFR distribution functions in the 3 environments

The sSFR distributions of filaments and outskirts are similar, the SFR (L_{IR}) distributions are *not*,
→ the excess IR-emitters in filaments are massive

M_{\star} -cumulative distributions of IR emitting galaxies

Core and filament **IR-emitting** galaxies are more massive than **IR-emitting** galaxies in the outskirts

SED-class fractions in different supercluster regions

The fraction of different SED classes among IR-bright galaxies is ≈ in different supercluster regions

Comparison with previous works

Previous cluster IR LF determinations limited to core regions

Dots: A1763 core Black line: Coma IR LF (Bai+06) Green line: Coma IR LF evolved to <z>=0.23 of A1763 (Bai+09) Pink line:

Bullet cluster IR LF (<z>=0.3, Chung+10)

 The density of IR-emitters in cluster cores increases with z as predicted by Bai+09

Comparison with previous works

Previous cluster IR LF determinations limited to the core

Dots: A1763 core Black line: Coma IR LF (Bai+06) Green line: Coma IR LF evolved to <z>

of A1763 (Bai+09)

Pink line: Bullet cluster IR LF (<z>=0.3, Chung+10)

Excess of LIRGs in the Bullet related to the infalling group?

Blue: mass distribution from lensing Red: X-ray emission

The Bullet cluster

(Markevitch+04, Clowe+06)

Comparison with previous works

A1763 core.

Mass from velocity dispersion.

The galaxy \sum SFR / total mass in cluster cores increases with z (but not as predicted by Bai+09)

Comparison with previous works

A1763 filament, outskirts, core.

Masses from richness scaling wrt mass of the core

 \sum SFR/Mass depends on z but also on the environment but not simply on the local galaxy density!

Summary of our findings:

- IR galaxies (SFR \ge 4 M $_{\odot}$ /yr): highest fraction in the filament, i.e. in the intermediate density region of the supercluster
- Filament IR-galaxies are massive (M★~10¹⁰ M_☉),
 ~ core IR galaxies, > outskirts IR galaxies
- Filament and outskirts IR galaxies have \approx sSFR, > core IR galaxies
- Normal SFG are the dominant SED class of IR galaxies (few AGN)
- Different regions have \approx fractions of SED classes
- Cluster total SFR per unit total mass ↑ with redshift, mostly from z≈0 to z≈0.4, less at z>0.4, in the filament > in the outskirts > in the core

Interpretation

Different M_{\star} distributions in \neq environments:

More massive galaxies in higher-density regions: theoretically predicted in \Land CDM model (Weinberg+04), and observed in the local Universe (Kauffmann+04)

Core IR-galaxies are recent arrivals from the filament

Different SFR in \neq environments: Which physical processes affect the SFR?

galaxy-galaxy collisions → tidal effects & mergers
ram-pressure stripping by the hot intra-cluster gas
tidal forces induced by cluster dφ/dr → tidal truncation
Starvation can result from any of the ◆ processes as the galaxy gas is expelled or consumed

Different processes are efficient in \neq environments:

galaxy-galaxy collisions: filaments and groups

- ram-pressure stripping: cluster core
- tidal forces induced by cluster $d\phi/dr$: *cluster center*

Dominant mode of star formation (~2/3) of IR galaxies: normal Star Forming Galaxies

 \Rightarrow no SFR enhancement process required

Lack of IR galaxies in cluster core

⇒ SFR suppression process required

SFG flow along filament into cluster core, where they loose their gas via (?) ram-pressure and stop star formation (color and morphological transformation follow) Stripping from the halo:

Stripping from the disk:

2

Scenario for the accelerated evolution of galaxies in clusters via gas stripping

Additional mode of star formation (~1/4) of IR galaxies: StarBurst & Post-StarBurst Galaxies ⇒ SFR enhancement process required

Filaments have higher density of galaxies than the field, and smaller velocity dispersion than the cluster core,

⇒ frequent & slow galaxy encounters
 ⇒ large tidal effects and some mergers
 ⇒ tidal gas loss + tidal gas compression & nuclear starburst

Slow collisions \rightarrow mergers

$$t_m \propto \frac{\sigma_v^3}{\sigma_g^4 r_g^2 \nu}$$

Merger timescale

Leading to tidal gas loss and morphological evolution

Tidal compression of galactic gas → central starburst

(Byrd & Valtonen 90)

Lack of LIRGs in the cluster core:

#SBG / #PSBG ≈ 1/3 - 1/4PSBG phase lasts ≤1 Gyr (Hogg+06; Goto 07) ⇒ SBG phase lasts ≤0.3 Gyr (see also McQuinn+10)

SBG speed along the filament is \approx 1 Mpc/Gyr \Rightarrow SBG become PSBG before entering the cluster

Part (~1/4) of the increase in the red-sequence population since z~0.2 occurs via the StarBurst mode of evolution (in agreement with Wild+09; but see De Lucia+09)

The "Paths of Glory" of galaxy evolution

What about the SBG in the cluster core?

Projection effects

and/or

Enhanced star-formation by the tidal compression of the cluster gravitational field shrinking the low-velocity dispersion galaxy groups which are being accreted into the cluster core ("substructures") ...see Ferrari+05; Oemler+09

What about the evolution of the IR LF?

General decline of the SFR of field galaxies with time (gas \rightarrow stars via normal mode of star-formation)

Infall rate of field galaxies into clusters ψ with time (Ellingson+01, van den Bosch 02)

Accelerated evolution at z≤0.4 due to accretion-rate peak? (van den Bosch 02)

Summing up

- Galaxy star formation (as seen in the IR) depends on the environment and the redshift, but these dependences are not simple:
- intermediate-density environments (like filaments) are the preferred sites of galaxy star formation,
- the evolution of cluster SFR per unit mass is clear only up to $z \approx 0.4$.
- StarBurst in filaments, ram-pressure stripping in cluster cores, z-dependent accretion of star-forming galaxies from the field, together draw a plausible interpretation of our findings.

What next?

→ A1763: galaxy spectral line-indices & GALEX UV data
 → Other clusters: Herschel data, evolution to z>1

High-z clusters:

48^{hrs} on 8 (proto)clusters (0.9<z<2.4) (GT accepted, p.i. B. Altieri) 97^{hrs} on 8 clusters (1.4<z<1.8) (OT accepted, p.i. P. Popesso)

ELEASED THRU INAF/OSS. ASTRON. TRIESTE