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operative vs. operational

From The Oxford Dictionary:

Operative  =   
characterized by operating or working; active in producing effect

Operationalism   =
a theory which accepts only such concepts as can be described 
in terms of the  operations necessary to determine them
(P.W. Bridgman, 1927)
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1.1  Algorithmic representation of physical systems

an operative description of physical systems

Basic concepts on structure and representation:

Individual components, identified and quantified by physical variables

physical variables

State of a system
described by the values of the fundamental variables

Hierarchy of interactions that shape the structure

physical magnitudes

Our aim:
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The ideal process of dissecting a system into a set of simpler interacting parts

allows us to describe the global behaviour of the system in terms of the laws
governing its elementary components.

Such a process leads eventually to a

model
- operationally defined -

of our perception of the physical world

Modelling is an unparalleled tool for scientific inquiry because,

for its own analytical nature,

It can be easily translated into a mathematical model
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Physical world

Continous model

Numerical algorithm

Discret model
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1.2 The quest for the optimum algorithm

La physique ne nous donne pas  seulement l’ocasión de 
résoudre  des problemes ... Elle nous fait pressentir la solution.
(Henry Poincare)

If the mathematical structure of the algorithm reflects 
that of the continuous equations

a performing (i.e. operative) tool

an image of the original physical system

An operative representation of 

our perception of the physical world

⇒

⇒
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modelling

The physical system

Stellar atmosphere

The stellar 

atmosphere problem

structure algorithm

physics:

laws of conservation

transport processes

initial and boundary conditions

non-local and non-linear     

problem

2. The stellar atmosphere problem
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The structure of the physical system ‘’stellar atmosphere’’ will be 
described by the values at each point of the fundamental variables. 

These values will be determined by

• the relations among the variables  

• the constraints imposed by the external conditions

• the internal energy of the system
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The fundamental equations  of Stellar Atmosphere Modelling

1. Constitutive equations:                       Equation of mass conservation

Equation of motion

2. Equation of state

3. The constraint of energy conservation:
Energy equations for matter and the radiation field

4. Transport equations:                         Radiative transfer (RT)

Convective transport

5. Microscopical description of matter:       average molecular weight

transport coefficients

),( Tf ρ ),,( νρ JTfLTE: Non-LTE:
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The equation of state links the mechanical 

with the thermodynamical state  of the system.

The coefficients νν χηµ and,

describe the microscopical state; in LTE they are functions

of the thermodynamical state only, also of the radiation 

field in non-LTE.

The transport coefficients νν χη and

express the dependence, both explicit and implicit, of

the energy balance on the solution of the RT equation.
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The essential difficulty of the stellar atmosphere problem consists in  the fact that

all the physical variables interact throughout

the whole atmosphere,

and the local variation of one of them can have an important effect on the 

local properties at a great distance.

Via a proper linearization technique, it may be possible to convert the 
original system into an 

equivalent system of linear algebraic equations,

whose matrix will reproduce, for the nature and collocation of its elements, 

the structure of the initial model.
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What looks simple in principle is often infeasible in the practice.

It is well known that the numerical inversion of large or ill-conditioned

matrices is a nasty problem.

In a seminal paper von Neumann and Goldstine (1947) showed that

when ‘’exact’’ arithmetic is replaced by ‘’approximate' arithmetic, 

no computing machine can perform faultlessly all the operations,

because of the finite number of digits available.

exact ≡ algebraical and transcendental operations

approximate ≡ elementary operations handled by a computer
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At the basis of the complete linearization technique there is the assumption, 
explicitly stated by Mihalas, that

no variable is more ‘’fundamental’’ than any other, for they all interact

(Mihalas, Stellar Atmospheres, 1978, p. 230)

Against this ‘’equalitarian’’ treatment:

i)  the different processes are characterized by very different scale;

ii) the strength of the coupling between the different phenomena

may vary considerably case by case.
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The Iterative Sequential Approach

According to the nature of their mutual interactions

the processes are groupped into

elementary blocks

Each block contains an amount of

physical information

that cannot be further reduced

physical information

algorithm

input output

values of the 

external variables

values of the

internal variables

solution of the block
atomic self-consistent

physical problem

Elementary block

internal variable(s)
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Simplified stellar atmosphere model:
stationary

homogeneous

plane – parallel

LTE
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Analysis of the sequential procedure

Strong and weak couplings

For the sake of a classification of the different interactions,
we may consider the 

range of action of the individual processes

Short range interactions:   local physics

Long range interactions :   transport processes

weak coupling

strong coupling

From the algorithmic standpoint,

The strength measures the slower or faster flow of information
among the different components of our model
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The block of the constitutive equations

A case of weak coupling
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Sequential solution of the energy block. The transport coefficients aν   ν   ν   ν   and σσσσνννν

are assumed to be data external to the cycle of iterations.

ΛΛΛΛ - iteration
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The energy block: simultaneous solution of the RT and the energy conservation

equations. 

∫
∞

≡
0

ννν dJa
a
JThe ‘’hard’’ coupling is brought about by the term

Neither this scheme does work. 
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The energy block: the simultaneous solution of the RT and the energy 
conservation equations through the iteration factors.

The coupling, through the IFs is now soft !
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4. Specific applications and perspectives

The computation of stellar atmosphere model

(as well as models of analogous astrophysical systems)

needs three basic ingredients:

• The physics
• Atomic data
• The algorithms
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but also, old problems

The old statement by Larry Auer

<< The greatest improvements in the models will not come from the 
introduction of new physics, but rather by a more adequate treatment

of the physics we already know, i.e. non-LTE and line blanketing >>

still hold true thirty years later.

To say nothing of convective transport!

new problems

(e.g., extended envelopes, winds, magneto hydrodynamics, shocks)
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The algorithms (our own future research lines)

• The treatment of radiative transfer

• The self-consistent computation of the structure

We are going to include the strongest spectral lines into the RE constraint, 

the necessary step toward a correct estimate of the radiative losses;

as well as the effect of both radiative and convective transport
on the temperature distribution with depth.

We are facing now the generalization of the Implicit Integral Method

in order to compute stellar atmosphere models in spherical geometry.
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Basic references:

Some iterative methods for radiative transfer problems

E. Simonneau and L. Crivellari, 2002,

in Radiative Transfer and Hydrodynamics in Astrophycs, ESA Publ. Series, Vol. 5.

An Implicit Integral Method to solve RT problems in stellar atmospheres

L. Crivellari, 2004, PhD Thesis, (La Laguna: Instituto de Astrofísica de Canarias).

Algorithmic representation of astrophysical structures

L. Crivellari, 2005, in The Role of Mathematics in Physical Sciences,

G. Boniolo, P. Budinich and M. Trobok eds, (Dordrecht: Springer), p. 97.
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Finis coronat opus
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The method of the Iteration Factors 
(Simonneau & Crivellari, 1988, ApJ, 330,415)

The monochromatic RT equation
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The fundamental equations of the stellar atmosphere problem
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<< The whole system, for all depths and frequencies, can be organized into a form

suitable for a Rybicki-method solution. Thus let 
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