<u>Celestial Mechanics: from</u> <u>Asteroids to Extrasolar Planets</u>

23.06.2010 :: Florian Freistetter :: OATS

Orbital Dynamics: Order and Chaos

 since Poincaré (1889) we know that the n-body problem (n>2) can not be solved analytically and can give chaotic solutions

→ Part I: Chaotic Orbits of Near Earth Asteroids

 during the last 15 years ~450 extrasolar systems were discovered – but it is still almost impossible to detect terrestrial planets

→ Part II: Stability of potential terrestrial planets in extrasolar systems

→ Part III: Planets and Asteroids in the disk of Beta Pictoris

Chaotic Motion of NEAs

Close encounters -> Chaos!

10563 Izdhubar

Chaotic Motion of NEAs

NEA Groups

2 important classifications:
Shoemaker et al. (1973):
Aten :: Apollo :: Amor
a, e (crossing behaviour)
Milani et al (1989)
7 classes
Dynamical behaviour (encounters, etc)
How does Chaos effect the groups?

Mixing!

Chaos + Long Timescales = Problems!

Mixing

Mixing

How much time does a NEA spend in its initial group?

• **69.86 %** (Shoemaker et al. classification) (Dvorak & Freistetter 2001, Freistetter 2009)

• **65.72%** (Milani et al. classification) (Dvorak & Freistetter 2001, Freistetter 2009)

 Need a new way of classification: Fuzzy Logic!

Fuzzy Logic

Fuzzy Classification

Name	а	e	i	G1	G2	G3	G4
2000GD2	0.757928	0.4765	32.14639	1	0.7585	0.9407	0
2000HB24	0.815912	0.4302	2.669175	1	0.9852	0.9895	0
2000HO40	0.743917	0.5241	5.981537	1	0.9951	1	0
2000LG6	0.916167	0.1121	2.829914	0.0164	0	0.9973	0
2000NL10	0.914292	0.8171	32.51204	1	0.3271	0.436	0.0147
2000OK8	0.984809	0.2211	9.985352	0.7272	0	0.9299	0.6993
2000PH5	1.000608	0.2301	1.71175	0.1708	0.9962	0.9792	0
2000PJ5	0.8727	0.3736	51.18267	1	0.9742	0	0
2000QP	0.847462	0.4631	34.7466	0.9008	0.9559	0	0
2000RH60	0.825892	0.5513	19.64366	1	0.9403	0.9191	0
2000RN77	0.951245	0.3184	16.0945	0.8264	0.9503	0.7779	0.7791
2000SG344	0.977357	0.0669	0.109731	0.0113	0.9929	0.9972	0
2000SP43	0.811372	0.4669	10.35569	1	0.9558	0.9378	0
2000SY2	0.858743	0.6426	19.23634	1	0.7415	0.7198	0.8302
2000SZ162	0.929366	0.1674	0.896554	0.2561	0.0126	0.9818	0.7287
2000UH11	0.870267	0.4223	32.21665	1	0.7179	0.6956	0
2000UK11	0.884688	0.2482	0.776174	0.9256	0.4127	0.9816	0.4049
2000UR16	0.903661	0.4387	11.74411	1	0.9341	0.8863	0
2000WC1	0.879512	0.2626	17.40797	0.8512	0.9356	0.8146	0
2000WO107	0.911347	0.7806	7.784174	1	0.9192	0.91	0.9963
2000WP19	0.854492	0.2886	7.678904	0.6033	0.9773	0.9227	0
2000YS134	0.85736	0.2242	3.500566	0.8264	0.9981	0.7895	0
2001AF2	0.953982	0.5953	17.8175	0.0692	0.7104	0.6852	0.8186
2001BA16	0.940225	0.1374	5.768623	0.3057	0.9977	0.9806	0
2001BB16	0.854463	0.1723	2.026138	0.6033	0.9919	0.9797	0
2001BE10	0.823508	0.369	17.50827	1	0.9358	0.9119	0
2001CK32	0.725401	0.3826	8.137319	0.3553	0.9747	0.7198	0
2001CP36	0.714308	0.4077	10.53547	0.4545	0.9642	0.955	0

 Comparison with Milanis
 Classification

http://www.celestialmechanics.eu/neas/

Fuzzy Classification

compare the classification data with the Spaceguard classes

Geographos group

many close approaches with Earth

some close approaches with Venus

<u>Oljato group</u>

chaotic orbits

• large eccentricities

Fuzzy Classification works!

(1620) Geographos:

• G1 (no mixing): 1

- G2 (Venus): 0.03
 - G3 (Earth): 0.76

(2201) Oljato:

• G1 (no mixing): 0.04

- G2 (Venus): 0.38
 - G3 (Earth): 0.36
 - G4 (Mars): 0.28

Extrasolar Planets

Observation of terrestrial planets?
-> Theoretic simulations
Stability in the habitable Zone

HD 41004 A

Star 1 $M_{star1} = 0.7 M_{Sun}$

Star 2 m = $0.4 M_{Sun}$ a = 21 AU e = 0.1

Planet m sin i = 2.3 M_{jup} a = 1.31 AU e = 0.39 <u>+</u> 0.17 $\omega \approx 114^{\circ}$

Influence of the companion

Different Methods

Importance of observations

 $e_{pl} = 0.24$ $e_{pl} = 0.26$ $e_{pl} = 0.28$ $e_{pl} = 0.30$

e_{pl}=0.32

b Pictoris

The disk of b Pictoris

many interesting structures:

The disk of b Pictoris

- "Falling Evaporating Bodies (FEBs)":
 variations in spectral lines
- $\bullet \rightarrow$ small bodies fall onto the star
 - \rightarrow planet has to disturb these bodies

Belt structures in the b Pic-disk

A: ~6.4 AU [2]
B: ~16 AU [1,2,4]
C: ~32 AU [1,2,4]

◆ D: ~52 AU [1,3,4]

structures in the outer disk

- Can these clumps be caused by planetesimal belts?
 - What planets are needed to confine such belts?

[1] Wahhaj et al 2003 [2] Okamoto et al. 2004[3] Telesco et al. 2005 [4] Golimowski et al. 2006

Planets

- belts are confined by planets
 What are the parameter of the planet(s) so that the perturbations cause the observed clumps?
- simulations with 1 3 planets
- parameters (M, a, e, i) very varied

One Planet

Two Planets

Three Planets

Summary

Confirmation of previous results Additional restrictions for planetary parameters At least 3 planets are needed to explain observations The planetary system could be

Beta Pictoris b

