The History of Cosmological Star Formation: Three independent Approaches and a Critical Test Using the Extragalactic Background Light

Ken Nagamine UC San Diego

Collaborators:

Jerry Ostriker (Princeton) Masataka Fukugita (ICRR, IAS) Renyue Cen (Princeton) astro-ph/0603257

Lars Hernquist (Harvard) Volker Springel (MPA) Art Wolfe (UCSD)

Overview: the concordance Λ CDM model

WMAP 3yr $(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx (0.24, 0.76, 0.04, 0.73, 0.74, 0.95)$

Spergel et al. '06

Tegmark et al. '03

What are the Goals?

- Self-consistent model of galaxy formation (disk & bulge), and BH formation
- How did gas transform into stars?
- Can we build a model that is consistent with low-z & high-z observations?
- Does the hierarchical cold dark matter model work?

WHAT WE DERIVE

- Star Formation Rate: $\dot{\rho}_{\star}(z) \, [M_{\odot} \, \mathrm{yr}^{-1} \, \mathrm{Mpc}^{-3}]$
- Disk, Bulge Formation Rate: $\dot{\rho}_{\star}^{\text{disk}}(z), \ \dot{\rho}_{\star}^{\text{bulge}}(z)$
- Stellar Mass Density: $\Omega_{\star}(z) \quad [M_{\odot} Mpc^{-3}]$
- Luminosity Density: j(z) [erg s⁻¹ cm⁻³]
- EBL (optical-IR, X-rays): I_{EBL} [erg cm⁻³]
- BH formation rate: $\dot{\rho}_{BH}(z)$
- colors, etc....

THREE INDEPENDENT APPROACHES

APPROACH I HIGH-Z OBSERVATION UNIVERSE AS A TIME-MACHINE

Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996) 1996

High-redshift galaxies in the *Hubble Deep Field*: colour selection and star formation history to $z \sim 4$

Piero Madau,^{1*} Henry C. Ferguson,^{1*} Mark E. Dickinson,^{1*} Mauro Giavalisco,^{2*}[†] Charles C. Steidel^{3*}[‡]§ and Andrew Fruchter^{1*}

UPDATED "MADAU" PLOT

APPROACH II LOCAL OBSERVATION THE FOSSIL MODEL

DELAYED EXPONENTIAL MODEL

$$\dot{
ho}_{\star} \propto \left(rac{t}{ au}
ight) \exp\left(-rac{t}{ au}
ight) \qquad au = 0.1, \ 1, \ 2, \ 3, \ 5, \ 10 \, {
m Gyr}$$

2-COMPONENT GALAXIES

Population synthesis model: Bruzual & Charlot (2003)
 Disk:
 $\tau = 4.5 \, \text{Gyr}$ $Z/Z_{\odot} = 0.8$

 Bulge:
 $\tau = 1.5 \, \text{Gyr}$ $Z/Z_{\odot} = 1.5$

PROPERTIES OF THE FOSSIL MODEL

Population	Ω_{\star}	au ^a	$Z/Z_{\odot}^{\rm b}$	$\langle t_{\rm age} \rangle^{\rm c}$	u-g	g-r	$(M_\star/L_B)^{\mathrm{d}}$	$(M_\star/L_r)^{\mathrm{e}}$	$(M_{\star}/L_K)^{\mathrm{f}}$
Bulge Disk	$0.00115 \\ 0.00083$	1.5 4.5	$\begin{array}{c} 1.5 \\ 0.8 \end{array}$	$10.5 \\ 7.0$	$\begin{array}{c} 1.78 \\ 0.94 \end{array}$	$0.84 \\ 0.43$	$5.27 \\ 1.13$	$3.01 \\ 1.11$	$0.81 \\ 0.52$

$$\dot{\rho}_{\star} = A\left(\frac{t}{\tau}\right) \exp\left(-\frac{t}{\tau}\right),$$
 (A, τ , Z)
3-params set to
local observation

APPROACH III THEORY

NUMERICAL SIMULATIONS, SEMI-ANALYTIC MODELS

THEORETICAL MODELS

- Cosmological Hydrodynamic Simulation
 Eulerian mesh code `TIGER' (Cen, Nagamine, & Ostriker '05)
- 2. Hernquist & Springel ('03) model (H&S model)
- 3. Semi-analytic model (SA model) (e.g. Kauffmann+ '93; Somerville+ '01; Cole+ '01, etc....)

Model Universe

Nagamine, Cen, Ostiker (2004)

COSMOLOGICAL HYDRO SIMULATION

Four criteria for SF in a cell

 $\delta > \delta_c$ (overdense) $\nabla\cdot\vec{v}<0$ (converging flow) $m_{\rm gas} > m_{\rm Jeans}$ (Jeans unstable) $t_{\rm cool} < t_{\rm dyn}$ (cooling fast) Each star ptcl is $\Delta m_{\star} = c_{\star} \frac{m_{\rm gas}}{t_{\star}} \Delta t$ tagged w/ $(m_{\star}, t_{\rm form}, Z/Z_{\odot})$ $t_{\star} = \max(t_{\text{cool}}, t_{\text{dyn}})$

H&S MODEL

Based on cosmological SPH simulations

SEMI-ANALYTIC MODELS

$$\tau_* = \begin{cases} \tau_*^0 [1 + \beta(V_{\text{circ}})] \\ \tau_*^0 [1 + \beta(V_{\text{circ}})] \left[\frac{\tau_{\text{dyn}}(z)}{\tau_{\text{dyn}}(0)} \right] (1 + z)^{\sigma} \end{cases}$$

Nagashima+ '05

Dark matter halo merger tree

Monte Carlo, extenden Press-Schechter, etc... (e.g. Cole '91; Kauffmann '93 Somerville & Kollatt '99)

$$\rho_{\text{cool}} = 3.52 \times 10^7 \frac{k_{\text{B}}T}{\tau_{\text{cool}}\Lambda_{23}(T)},$$
$$\dot{m}_* = \frac{m_{\text{cold}}}{\tau_*(V_{\text{c}})},$$
$$\tau_*(V_{\text{c}}) = \tau^0_* \left(\frac{V_{\text{c}}}{V_0}\right)^{\alpha_*},$$

Somerville+ '01

RESULTS OF ALL MODELS

COSMOLOGICAL SF HISTORY

Models agree w/ extinction corrected data to within factor ~2

Chabrier IMF
$$[0.01, 100] M_{\odot}$$

 $\rho_{\rm HV} = 1.24 \times 10^{28} \text{ SFR}$

$$[erg s^{-1} Hz^{-1}]$$
 $[M_{\odot} yr^{-1}]$

COMPARING TWO IMFS

Salpeter IMF

Chabrier IMF

The most massive gal @ z=6 has 10^{11} M \odot

Eyles et al. (2005)

Mstar>10^10Mo

Not a surprise.

There is no "mass-scale problem" at z=2-6.

KN et al. 2004, 2005a,b

Night, KN + '06 KN+ '06

Rest-frame UV LF at z=6

Reasonable z=6 E(B-V)=0.15agreement with Q6 0 D5 obs at bright-end G6TVD N864L22 $[Mpc^{-3} mag^{-1}]$ Steep faint-end in -2 sims: $\alpha \sim -2.0$ ф log -4Updated data points: Bouwens+ '06 -22-20-18-16-12-14 $M_{1350, rest}$

Nagamine+ '06

BzK' = (B-z) - (z-K) galaxies

INITIAL MASS FUNCTION OF STARS (IMF)

GAS RECYCLING FRACTION

STELLAR MASS DENSITY

(Nagamine+ '05)

BOLOMETRIC LUMINOSITY DENSITY

0

redshift

EXTRA-GALACTIC BACKGROUND LIGHT (EBL)

Observational constraints on EBL

Challenge: Subtraction of Zodiacal light (emission by interplanetary dust)

NIRB Excess??

(Cooray+ '05)

PHYSICAL QUANTITIES AT Z=0

Model	Ω_{\star}^{\dagger}	$M_{\star}{}^{\natural}$	$M_{\rm rem}^{\forall}$	I_{EBL}^{\ddagger}	$\dot{ ho_{\star}}^{\S}$	$j_{ m bol}{}^{ m a}$	$j_U{}^{\mathrm{b}}$	$j_B{}^{ m c}$	$j_r{}^{ m d}$	$j_K{}^{ m e}$	u-g	g-r
Fossil	0.0020	2.11	0.59	40	0.86	2.8	1.4	1.3	1.5	4.1	1.54	0.67
bulge	0.00115	1.21	0.36	20	0.022	0.7	0.2	0.3	0.5	1.9	1.78	0.84
disk	0.00083	0.91	0.22	20	0.837	2.1	1.2	1.0	1.0	2.2	0.94	0.43
TVD	0.0029	3.04	0.85	55	1.02	3.5	1.6	1.6	2.0	5.4	1.20	0.61
H&S	0.0021	2.22	0.60	40	1.30	3.5	1.8	1.6	1.8	4.4	1.00	0.50
\mathbf{SA}	0.0020	2.13	0.56	41	1.05	3.2	1.6	1.4	1.7	4.3	1.06	0.53
Consensus	0.0023	2.46	0.68	45	1.06	3.3	1.6	1.5	1.8	4.6	1.25	0.59
Model^{\P}	± 0.0005	± 0.51	± 0.15	± 9	± 0.22	± 0.4	± 0.2	± 0.2	± 0.3	± 0.7	± 0.27	± 0.09
Observed	0.0018		—	42-	0.5	3.2	1.4	1.2	1.27	3.4		
range	-0.0039			135	-1.6	-5.0	-1.8	-2.0	-1.33	-5.5		

Chabrier IMF $[0.01, 100] M_{\odot}$

The η_{\star} parameter

$$\eta_{\star} \equiv \left(\frac{4\pi}{ct_H}\right) \frac{I_{EBL}}{j_{\text{bol}}}$$

A test independent of IMF

BH FORMATION RATE 8 HARD X-RAY BACKGROUND (XRB)

OBTAINING THE BH FORMATION RATE

AGN EMISSIVITY

 $XRB \longleftrightarrow \epsilon_{BH} \longleftrightarrow f_{BH} \longleftrightarrow \rho_{BH}(0) \sim (2.5 - 3) \times 10^5 h_{70}^2 M_{\odot} Mpc^{-3}$ (Aller & Richstone '02; Yu-Tremaine '02)

X-RAY BACKGROUND (XRB)

Reducing the ratio of X-rays to total by x1.8 (i.e. increasing the bolometric correction)

Yellow band: observed Luca & Moledi '04 (upper) Gruber+ '99 (lower)

CONCLUSIONS

- The Fossil model works well --- simple & clear, matches obs
 - bulge-disk decomposition
 - Epoch of spheroid formation: z>~1.5
 - Madau plot: rise @ z=0->2, ~constant @ z=2-7
- Inconsistent observations:
 - SFR(z) vs. $\Omega_{\star}(z)$: theory higher @ z >1 -- "Missing galaxies"?
 - j(z=0) vs. EBL(if 100) : theory $I \leq 60 \text{ nW m}^{-1} \text{ sr}^{-1}$

astro-ph/0603257

THE FUTURE

- Find fainter "Missing Galaxies"@ high-z GMT, TMT, NGST, ...
- Understand Star Formation IMF(t, environment), efficiency, DLAs, [CII]
- Galaxy -- IGM : SN Feedback
- BH -- Galaxy: AGN Feedback
- Connect

 $\begin{array}{cccc} \text{large-scale} & \longleftrightarrow & \text{small-scale} \\ & \text{high-z} & \longleftarrow & \text{low-z} \\ & \text{Theory} & \longleftarrow & \text{Observation} \end{array}$

