The First Stars:

Clues from Lyman Break Galaxies and QSO Absorption Systems

Max Pettini Institute of Astronomy

Current View of Cosmic History

"The epoch of reionisation is the last directly observable phase of cosmic evolution which remains to be verified and explored"

(Fan, Carilli, & Keating 2006, ARAA, 44, 415).

It is acting as a catalyst, focusing the attention of astronomers studying:

- The Cosmic Microwave Background
- The Lyman α forest at $z \gtrsim 6$
- The highest redshift galaxies up to $z_{\rm max} \simeq 7$
- The chemical composition of the oldest stars in the Galactic halo

Galaxies detected up to $z \sim 7$

Reddy et al. 2007

■ Metals in the Intergalactic Medium at $z \gtrsim 6$: Pop III Stars or 'Normal' Star-Forming Galaxies?

- Metals in the Intergalactic Medium at $z \gtrsim 6$: Pop III Stars or 'Normal' Star-Forming Galaxies?
- Jonising Radiation from Star-Forming Galaxies at $z \simeq 3$

- Metals in the Intergalactic Medium at $z \gtrsim 6$:
 Pop III Stars or 'Normal' Star-Forming Galaxies?
- Ionising Radiation from Star-Forming Galaxies at $z \simeq 3$

The Most Metal-Poor Damped Lyα Systems: Clues to Nucleosynthesis at Low Metallicities

- Metals in the Intergalactic Medium at $z \gtrsim 6$: Pop III Stars or 'Normal' Star-Forming Galaxies?
- Ionising Radiation from Star-Forming Galaxies at $z \simeq 3$

- The Most Metal-Poor Damped Lyα Systems: Clues to Nucleosynthesis at Low Metallicities
- 'First Stars' in Galaxies at $z \simeq 2$

Metals in the Intergalactic Medium

ullet Can now probe the IGM to z>6 using SDSS QSOs (and GRB afterglows)

Little information left in the Ly α forest itself, but still plenty of signal longwards of Ly α emission line, where metal absorption lines occur

Most common tracer of metals in the Ly α forest is C $\vee \lambda\lambda1548,1550$

Songaila 2001

Ellison et al. 2000

Metals in the Intergalactic Medium

- ▶ Integration of f(N) gives Ω_{CIV}
- Surprising result: $\Omega_{\rm C\,IV} pprox$ constant from z=1.5 to 5

Songaila 2001; Pettini et al. 2003

Are we seeing carbon produced by the 'first stars' at $z \gg 5$?

Not necessarily—Oppenheimer & Davé (2006) can reproduce the approx. constant behaviour of $\Omega_{\rm CIV}$ in models (with feedback) in which $C_{\rm TOT}$ increases with time, but $C^{3+}/C_{\rm TOT}$ decreases with time

Metals in the Intergalactic Medium

Searches for C \bowtie at z>6 may provide clues to the origin of C in the IGM Require high resolution spectroscopy in the near-IR ($\sim 1\,\mu$)

VLT-ISAAC (Ryan-Weber, Pettini, & Madau 2006)

- Similar results with Gemini-NIRS (Simcoe 2006)
- ightharpoonup O₁, C₁₁ up to z=6.26 (Keck-HIRES; Becker et al. 2006)

Metals in the Intergalactic Medium at $z\sim 6$

- ightharpoonup Strong hints that we are not yet seeing a fall in $\Omega_{\rm C\,IV}$
- How typical of the IGM is this particular sight-line? Excess of galaxies in the field, two within 100 kpc from QSO sight-line.

Arr Do (faint) galaxies at z > 6 provide sufficient photons to keep the IGM ionised?

ightharpoonup Do (faint) galaxies at z>6 provide sufficient photons to keep the IGM ionised?

It all depends on the escape fraction of Lyman continuum photons

- Arr Do (faint) galaxies at z>6 provide sufficient photons to keep the IGM ionised?
- It all depends on the escape fraction of Lyman continuum photons
- In starburst galaxies at z < 1 (down to the present time) f < 0.1

- Arr Do (faint) galaxies at z>6 provide sufficient photons to keep the IGM ionised?
- It all depends on the escape fraction of Lyman continuum photons
- In starburst galaxies at z < 1 (down to the present time) f < 0.1
- Is this also the case at higher redshifts?

GALACTIC SCALE OUTFLOW

 $M_{out} \ge 80 M_{\odot} yr^{-1} \ge M_{in} \approx 40 M_{\odot} yr^{-1}$

Overdensity of galaxies at $\langle z \rangle = 3.09$ in the H'ii SSA22 field

Lyman Continuum Radiation from LBGs Shapley et al. 2006

Deep (30 000 – 80 000 s) spectroscopy of 14 galaxies With LRISB can now reach to $\lambda_{\rm obs} \simeq 3200\,{\rm \AA},\,\lambda_0 \simeq 800\,{\rm \AA}$

Two out of 14 show signal below the Lyman edge

Metagalactic Ionising Background

$$\log J_{\nu}^{\rm gals} \simeq 2.6 \times 10^{-22}$$
; $\log J_{\nu}^{\rm QSOs} \simeq 2.4 \times 10^{-22}$ (Hunt et al. 2004)

Together $\implies \Gamma_{-12} \simeq 1.3$, in good agreement with Bolton et al. (2005).

C, N, O in Damped Lyman α Systems

- DLAs are a valuable complement to Galactic studies of element abundances in metal-poor stars
- Abundance measurements are relatively straightforward, provided relevant absorption lines are not saturated
- Samples of DLAs increased by an order of magnitude by SDSS

Search the database of SDSS QSOs with damped Ly α systems for DLAs (apparently) *without* associated metal lines...

Search the database of SDSS QSOs with damped Ly α systems for DLAs (apparently) *without* associated metal lines...

...because they are likely to have the *narrowest* metal absorption lines and therefore are likely to be the most metal-poor.

...because they are likely to have the *narrowest* metal absorption lines and therefore are likely to be the most metal-poor.

Prochaska et al. 2007 Murphy et al. 2007 Ledoux et al. 2006 ...because they are likely to have the *narrowest* metal absorption lines and therefore are likely to be the most metal-poor.

Prochaska et al. 2007 Murphy et al. 2007 Ledoux et al. 2006

These are the only DLAs where (C/O) may be measurable (the C □ and O □ absorption lines are normally too strong).

Most metal-poor DLAs have [Fe/H] $\simeq -2.5$

Q0913+072, $z_{\rm em}=2.785$ DLA at $z_{\rm abs}=2.61844$ $N({\rm H\,I})=2.3\times 10^{20}$ $({\rm O/H})+12=6.22;$ [O/H]=-2.44 High S/N VLT-UVES spectrum

An Additional Source of C at low Metallicities?

Akerman et al. 2004

(Meynet & Maeder 2002 yields)

An Additional Source of C at low Metallicities?

(Chieffi & Limongi 2002 Pop III yields)

An Additional Source of C at low Metallicities?

The few DLA measurements available appear to confirm the rise in [C/O] at [O/H] $\lesssim -1$ seen in MW halo stars

Primary Nitrogen from Massive Stars?

N and O Abundances in H II regions and DLAs

▶ A floor at (N/O) $\simeq -2.3$?

The 'First' Galaxies?

Taniguchi et al. 2005

High Redshift Galaxies: How Do We Find Them?

I. Efficient Photometric Preselection

Galaxies at redshifts spanning most of the Hubble time can now be found efficiently using photometric pre-selection tuned to well-defined redshift intervals. (Steidel et al. 2004)

LBG ($\langle z \rangle = 3.0$), BX ($\langle z \rangle = 2.2$), BM ($\langle z \rangle = 1.7$) Photometric Selection

High Redshift Galaxies: How Do We Find Them?

II. Multi-object Follow-up Spectroscopy

Relatively easy to assemble samples of thousands of galaxies at $z \gtrsim 1.5$, e.g.

940 Lyman break galaxies 2050 'BX' galaxies

with $\mathcal{R} < 25.5$, i.e. $L \gtrsim 0.2L^*$ at z = 2.2

Infrared Observations of a sub-sample of 'BX' ($z \simeq 2$) Galaxies

114 with NIRSPEC K-band spectra ($R \simeq 1400$): H α , [N II], [S II] emission lines.

90 with ground-based (WIRC) J- and K-band photometry to $J \simeq 24.0, K \simeq 22.3$ (3 σ , Vega)

35 with *Spitzer* IRAC photometry (3.6, 4.5, 5.8, 8.0 μ m)

Assembled Stellar Masses

Deduced from best fitting Bruzual & Charlot models to rest-frame UV-optical-(near-IR) SEDs.

Relatively insensitive to exact details of star-formation history

Results: $M_{\rm stars} = 10^9 - 10^{11.5} M_{\odot}$, $\langle M_{\rm stars} \rangle = 3 - 4 \times 10^{10} M_{\odot}$

Metallicities

The ratio of the intensities of [N II] and H α measures the oxygen abundance (Pettini & Pagel 2004):

- Advantage: only two emission lines needed, close in wavelength
- Disadvantages: Saturates at near-solar metallicity
 Dependence on ionisation parameter

A Stellar Mass-Metallicity Relation at High Redshift

(Erb et al. 2006)

A Stellar Mass-Metallicity Relation at High Redshift

(Erb et al. 2006) Note:

Most galaxies have $(O/H) \gtrsim 1/3 (O/H)_{\odot}$

A Stellar Mass-Metallicity Relation at High Redshift

(Erb et al. 2006) Note:

- Most galaxies have $(O/H) \gtrsim 1/3 (O/H)_{\odot}$
- lacktriangle Offset from present-day (SDSS) M-Z relation

Star-Forming Galaxies at $z\sim 2$

Recent progress in determining their masses in (a) stars; (b) gas; (c) metals; and (d) dark matter (Erb et al. 2006a,b, and c)

► We are seeing galaxies over a range of evolutionary stages

- We are seeing galaxies over a range of evolutionary stages
- Some have apparently just 'turned on', with:
 - (i) Low stellar masses: $M_{\rm star} \lesssim {\rm few} \times 10^9 \, M_{\odot} \ll M_{\rm dyn}$
 - (ii) Young best-fitting ages: $t \sim t_{\rm dyn} \lesssim {\rm few} \times 10^7 \, {\rm years}$
 - (iii) High gas fractions: $\mu \sim 1$

- We are seeing galaxies over a range of evolutionary stages
- Some have apparently just 'turned on', with:
 - (i) Low stellar masses: $M_{\rm star} \lesssim {\rm few} \times 10^9 \, M_{\odot} \ll M_{\rm dyn}$
 - (ii) Young best-fitting ages: $t \sim t_{\rm dyn} \lesssim {\rm few} \times 10^7 {\rm \ years}$
 - (iii) High gas fractions: $\mu \sim 1$
- Others have nearly exhausted their fuel supply:
 - (i) $\mu \lesssim 0.2$
 - (ii) $M_{\rm stars} + M_{\rm gas} \gtrsim 10^{11} \, M_{\odot}$
 - (iii) $z_{\rm form} > 4$ (15% of the sample has ages \approx age of the universe) (Entirely consistent with number density of $z \simeq 5.5-6.5$ galaxies in GOODS fields Yan et al. 2006)

- We are seeing galaxies over a range of evolutionary stages
- Some have apparently just 'turned on', with:
 - (i) Low stellar masses: $M_{\rm star} \lesssim {\rm few} \times 10^9 \, M_{\odot} \ll M_{\rm dyn}$
 - (ii) Young best-fitting ages: $t \sim t_{\rm dyn} \lesssim {\rm few} \times 10^7 {\rm \ years}$
 - (iii) High gas fractions: $\mu \sim 1$
- Others have nearly exhausted their fuel supply:
 - (i) $\mu \lesssim 0.2$
 - (ii) $M_{\rm stars} + M_{\rm gas} \gtrsim 10^{11} \, M_{\odot}$
 - (iii) $z_{\rm form} > 4$ (15% of the sample has ages \approx age of the universe) (Entirely consistent with number density of $z \simeq 5.5-6.5$ galaxies in GOODS fields Yan et al. 2006)
- ightharpoonup Galaxies of similar $M_{
 m tot}$ began forming stars at different times
- At a given redshift, galaxies with a wide variety of $M_{\rm tot}$ have just begun forming stars

Q2343-BX418 z = 2.305:

A Lower Redshift Analogue to z = 6.5 Ly α Emitters?

Pettini et al. 2007

Q2343-BX418 z = 2.305

► R_{23} gives (O/H) $\simeq 1/5$ (O/H) $_{\odot}$ — i.e. already relatively metal-rich after less than 100 Myr from the onset of star formation

Conclusions

There are metals in the IGM at $z\gtrsim 6$, although their distribution may be very patchy

Conclusions

- $\stackrel{\checkmark}{\bullet}$ Star-forming galaxies at z > 6 are:
 - (a) numerous,
 - (b) probably already metal-enriched, and
 - (c) likely to leak ionising photons into the IGM (although typical escape fraction has yet to be determined)

Conclusions

There are metals in the IGM at $z\gtrsim 6$, although their distribution may be very patchy

 $\stackrel{\checkmark}{\bullet}$ Star-forming galaxies at z > 6 are:

- (a) numerous,
- (b) probably already metal-enriched, and
- (c) likely to leak ionising photons into the IGM (although typical escape fraction has yet to be determined)

Near-IR observations of DLAs at z>5 (if they can be found) are more likely to take us close to uncovering the nucleosynthetic products of the 'First Stars'