Exploring the MOND Paradigm

Olivier Tiret (SISSA)

- A brief history on the dark matter
- The formulation of MOND
- Some observationnal issues
- N-body simulations and modified gravity
- Perspectives

- Velocities of individual galaxies in the Coma Berenice Cluster (Zwicky, 1933).
- Also, observations at galactic scale show that galaxies should contain more mass that what it is observed.
- I970s, generally accepted that galaxies contain "dark matter", and is related to the missing mass in galaxy cluster (Rubin).

- Velocities of individual galaxies in the Coma Berenice Cluster (Zwicky, 1933).
- Also, observations at galactic scale show that galaxies should contain more mass that what it is observed.
- I970s, generally accepted that galaxies contain "dark matter", and is related to the missing mass in galaxy cluster (Rubin).

- Several models (HDM, WDM, CDM) for several candidats : neutrinos, WIMPS,...
- Cosmological simulations: ΛCDM

- Sucessfull concerning the large scale structure formation.
- But three problems still persist at galactic scale:
 - Cusp
 - Angular momentum
 - Satellites

Numerical artefact? Feedback?

Mayer et al (2008), Diemand et al (2005) Strigari et al (2007), Madau et al (2008)

- Sucessfull concerning the large scale structure formation.
- But three problems still persist at galactic scale:
 - Cusp
 - Angular momentum
 - Satellites

Numerical artefact? Feedback?

Mayer et al (2008), Diemand et al (2005) Strigari et al (2007), Madau et al (2008)

$$\frac{M_{dyn}}{M_{vis}} = f\left(\frac{a_N}{a_0}\right)$$

<u>Milgrom, 1983:</u> modification of the gravitation law below a critical acceleration $a_0 \sim 1.2 \times 10^{-10} \text{ m.s}^{-2}$

 $a_N = a_M \mu(a_M/a_0)$

MOND

The formulation of MOND: $a_N = a_M \mu(a_M/a_0)$ $x = a_M/a_0$ The μ -function is constrained by the observations • high accelerations: $x \gg 1, \mu(x) \rightarrow 1$ $a_M = a_N$ $a_N \propto 1/r^2$ • low accelerations: $x \ll 1, \mu(x) \rightarrow x$ $a_M = \sqrt{a_0 a_N}$ $a_M \propto 1/r$ $\frac{x}{1+x}, \frac{x}{\sqrt{1+x^2}}$... simple / standard / ...

MOND

The formulation of MOND:
$$a_N = a_M \mu(a_M/a_0)$$
 $x = a_M/a_0$
The μ -function is constrained by the observations
• high accelerations:
 $x \gg 1, \mu(x) \rightarrow 1$ $a_M = a_N$ $a_N \propto 1/r^2$
• low accelerations:
 $x \ll 1, \mu(x) \rightarrow x$ $a_M = \sqrt{a_0 a_N}$ $a_M \propto 1/r$
 $\frac{x}{1+x}, \frac{x}{\sqrt{1+x^2}} \cdots$ simple / standard / ...

$$a_M = v_c^2 / r$$
$$v_c^2 \to cst$$

Rotation Curves

<u>MOND:</u>

Newtonian gravity:

 $\mu(x)$ and a_0 are fixed // (M/L) varies

 $(M/L), \rho_{DM}, r_{DM}$ vary

The baryonic Tully-Fisher relation

 $L \propto v^4$

• Tully-Fisher relation:

• Baryonic Tully-Fisher relation: $M \propto v^4$

- <u>MOND</u>:
 - $v^4 = GMa_0$
- <u>Newtonian gravity:</u>
 - $Mv^2 \propto M^2/r$ Viriel theorem $M \propto r^2$ Exponential disc

McGaugh et al (2000)

Galaxies Cluster

- The Bullet Cluster
 MOND

 M_ν = 3 M_X
 2eV neutrinos Angus et al. (2007)

 Newtonian gravity
 dark matter halo
 M_{DM} = 6M_X
 Velocity of the chock
 Δv = 4700 km.s⁻¹
 - in agreement with MOND
 - too high for Newtonian gravity

Springer & Farrar (2007), Milosavljevic et al (2007), Mastropietro & Burkert (2008), Angus & McGaugh (2008)

red: gas blue: gravitation Clowe et al (2007)

blue: gravitationnal lens

Galaxies Cluster

ABEL 520

- MOND: lens = gas X
- Newtonian gravity

 $DM \neq$ massive galaxies

Mahdavi et al (2007)

blue: gravitationnal lens red: gas

Galaxies Cluster

ABEL 520

- MOND: lens = gas X
- Newtonian gravity

 $DM \neq$ massive galaxies

Mahdavi et al (2007)

Cosmic Microwave Background

• dashed line (MOND): $\Omega_b=0.05, \Omega_{\Lambda}=0.95$

- solid line (MOND): $\Omega_b = 0.05, \Omega_A = 0.78, \Omega_v = 0.17$
- dotted line (Λ CDM): Ω_b =0.05, Ω_Λ =0.72, Ω_{DM} =0.23

Elliptical galaxies

 Test the gravitational field around ellipticals with the movement of galaxy satellites (SDSS).

Jeans equation: $\frac{d\sigma^2}{dr} + \sigma^2 \frac{2(\beta + \alpha)}{r} = -g(r)$ $\alpha = d \ln \rho / d \ln r$ $\beta = 1 - (\sigma_{\theta}^2 + \sigma_{\phi}^2) / 2\sigma$ $\sigma \to cst$

Elliptical galaxies

Tiret et al (2007)

The dark baryons

• Cosmic baryon budget:

- 6%, stars + gas in the galaxies
- 30%, Lyman α forest
- 5-10%, Warm-Hot medium
- 50% at least are missing... Fukugita et al (1998), Nicastro et al (2005), Danforth et al (2006)
- Some of them are present at galactic scale like the molecule H₂.

Pfenniger & Combes (1994)

- Compatibility with the MOND phenomenology:
 - which fraction M_{dark}/M_{HI}?
 - value of the critical acceleration a₀?

The dark baryons

- Cosmic baryon budget:
 - 6%, stars + gas in the galaxies
 - 30%, Lyman α forest
 - 5-10%, Warm-Hot medium
 - 50% at least are missing... Fukugita et al (1998), Nicastro et al (2005), Danforth et al (2006)
- Some of them are present at galactic scale like the molecule H₂.

Pfenniger & Combes (1994)

- Compatibility with the MOND phenomenology:
 - which fraction M_{dark}/M_{HI}?
 - value of the critical acceleration a₀?

The dark baryons

Tiret & Combes, accepted in A&A

Numerical simulations

Numerical simulations

Numerical simulations

N-body code

- Potential Solver
 - Gravity: Newtonian / MOND
 - Efficiency: convergence obtained after a few cycles
- Density/Forces/...
 - Cloud In Cell (CIC) interpolation
- Equations of motion
 - leapfrog scheme
- Gas Dynamics
 - sticky-particles

Bar formation

Bar strengh

Bar frequency

Tiret et Combes (2007)

Angular momentum transferts

Newtonian gravity

MOND

Resonances

Tiret et Combes (2008)

Resonances

Tiret et Combes (2008)

The Antennae galaxies, DM

The Antennae galaxies, MOND

The Antennae galaxies, MOND

MOND simulations

Observations

t = 0.00 Gyr

Conclusion

- Numerical code to test MOND
- Newtonian / MONDian gravity: the problem is still degenerated
- It becomes discriminating for interacting galaxies (dynamical frcition)

Conclusion

- Numerical code to test MOND
- Newtonian / MONDian gravity: the problem is still degenerated
- It becomes discriminating for interacting galaxies (dynamical frcition)

Galaxy Evolution

Conclusion

- Numerical code to test MOND
- Newtonian / MONDian gravity: the problem is still degenerated
- It becomes discriminating for interacting galaxies (dynamical frcition)

Galaxy Evolution

Structure Formation

- Cosmology (Llianares et al 2008)
- Boundary conditions / Gas physics / ...
- A "clean" relativistic theory is needed
- Several alternative theories (relativistic) are developed now (Blanchet & Le Tiec 2008, Fuzfa & Alimi 2007, Ferreira et al 2008, ...)