

# Finding the first galaxies with a magnifying GLASS

**TOMMASO TREU (UCLA)** 

#### Outline

- When did cosmic re-ionization occur? Who did it?
- Results from imaging
- **Results from spectroscopy**
- The importance of gravitational lensing
- The Grism Lens Amplified Survey from Space (GLASS)
- How about black holes? Measuring black holes
   masses at high-z with reverberation mapping

### **Cosmic reionization**



#### Whodunit?





#### We know there are LBGs



Schmidt et al. 2014b

#### And we will find more!



BORG cycle 22 approved; PI: Trenti

# Not clear if they are sufficient for reionization



# ...but we have not been able to confirm them!



Treu et al. 2013

# ...but we have not been able to confirm them!



No lya published so far beyond z=7.6 (Schenker+ 14) despite many attempts (e.g. Pentericci+14, Finkelstein+).

Is the optical depth increasing dramatically consistent with the tailend of reionization (Fontana+10; Treu+14)?



Treu et al. 2013

# Is decline in lya a smoking gun of reionization?



# A simple model. Smooth or patchy lya optical depth?

#### **Bayesian inference from observations** (Treu et al. 2012, 2013)



Tilvi et al. 2014

### Patchy!



Pentericci et al. 2014 (models by TT); See also Tilvi et al. 2014

#### The importance of gravitational lensing

# Lensing magnification effects in "blank fields"



Strong and intermediate lensing

Mason et al. 2015; see also Wyithe et al. 2011

# Lensing magnification effects in "blank fields"



Mason et al. 2015; using pangloss by Collett et al. 2013

#### The effect is small now...



Mason et al. 2015



Mason+ 2015; LF from Schmidt+2014b and Bouwens+2014



Mason+15; LF from Schmidt+14b, Munoz+12

# Of course, lensing is the only way to probe the faint end





### Key science drivers

- When did cosmic re-ionization occur? Who did it?
  - Observing Lya at z=5.5-13.0
- How do gas and metals cycle in and out of galaxies?
  - Spatially resolved metallicity of galaxies
- How does environment affect galaxy evolution?
  - Maps of star formation in cluster galaxies at z~0.5
- How are luminous and dark matter distributed in clusters?
  - Cluster mass models
- Supernovae cosmology
  - Discovery of high-z magnified supernovae la

#### The tool: HST grisms



#### Wavelength coverage and observational strategy



- Spectroscopy of 10 clusters, including HFF and CLASH
- 140 orbits cycle 21 (PI Treu) glass.physics.ucsb.edu

#### **GLASS** in context

HST spectroscopy of clusters.

GLASS

SPACE

No atmosphere No skylines

Similar to synergy between 3D-HST and CANDELS in the field

**Extensive HST** imaging of clusters

Atmospheric absorption

GROUND

and skylines

European Southern

SPACE

Observatory www.eso.org

W. M. KECK OBSERVATORY

#### A long awaited discovery Supernova "Refsdal"



Kelly, Rodney, Treu et al. 2014

### Key science drivers

- When did cosmic re-ionization occur? Who did it?
  - Observing Lya at z=5.5-13.0
- How do gas and metals cycle in and out of galaxies?
  - Spatially resolved metallicity of galaxies
- How does environment affect galaxy evolution?
  - Maps of star formation in cluster galaxies at z~0.5
- How are luminous and dark matter distributed in clusters?
  - Cluster mass models
- Supernovae cosmology
  - Discovery of high-z magnified supernovae la



- Spectrum of everything in the field of view
- High sensitivity owing to lensing magnification
- Excellent photometric redshift owing to HFF/ CLASH photometry
- Uninterrupted wavelength coverage, potentially able to detect weaker and redder nebular lines
- Many I.o.s reduce cosmic variance and Iya patchiness effects (c.f. Robertson et al. 2014)



#### WFC3 G102 Spectra from GLASS



Confirmed lya in multiply imaged sources at z=6.1 and 6.4 (Boone+13, Balestra+13, Vanzella+14)





Schmidt et al. (2015); six clusters





Schmidt et al. (2015); six clusters

### Key science drivers

- When did cosmic re-ionization occur? Who did it?
  - Observing Lya at z=5.5-13.0
- How do gas and metals cycle in and out of galaxies?
  - Spatially resolved metallicity of galaxies
- How do environment affect galaxy evolution?
  - Maps of star formation in cluster galaxies at z~0.5
- How are luminous and dark matter distributed in clusters?
  - Cluster mass models
- Supernovae cosmology
  - Discovery of high-z magnified supernovae la



# Metallicity gradients as a test of feedback models



Jones+15



# Metallicity gradients: resolution effects



Yuan+13



# Metallicity gradients: current state of affairs

- \* Only a handful of measurement achieve sufficient resolution by combining AO resolution with lensing
  - \* They seem to prefer steep gradients (hence normal feedback)
- \* Lower resolution measurement seem to point at shallower profiles
  - \* Instrumental effect or evidence for enhanced feedback or different modes of metal enrichment?



# Superb resolution, sensitivity and wavelength coverage





# Metallicity maps and gradients







Jones+15



# An intriguing result



- The shallow gradients measured by GLASS are real
- Consistent with enhanced feedback, or perhaps gas has been stirred by the interaction with the two companion galaxies?
- Analysis of 20 systems in GLASS will provide the answer

Jones+15





GLASS will measure it for 100s of objects down to  $10^7 M_{sun}!$ 

# Summary

- Something very interesting is happening at z>8:
  - The IGM is becoming neutral
  - Or galaxies are changing rapidly
- We have not detected the sources of ionizing photons, but great progress will come with GLASS and the Frontier fields
- The evolution of metallicity gradients is still very much an open question. GLASS will be a major step forward and test feedback and outflows models



# what about quasars?



#### Measuring black hole masses at z>0

- Broad Hβ width measures the kinematics of the gas orbiting the black hole
- Size from L
- Overall uncertainty on BH mass ~0.4-0.5 dex



### **Reverberation Mapping**



Ring of gas with radius r

Gas along line of sight to observer will appear to respond with no delay

Gas that is furthest from observer will appear to have response delayed by 2r/c

#### Mean lag time is r/c

Blandford & McKee 1982

### **Example of traditional results**

| Table 13. V | Virial Products | and Derived | Black | Hole | Masses |
|-------------|-----------------|-------------|-------|------|--------|
|-------------|-----------------|-------------|-------|------|--------|

| Object                   | $c	au_{ m cent}\sigma_{ m line}^2/G$<br>$(10^6 {\rm M}_{\odot})$ | $M_{\rm BH}{}^{\rm a}$<br>$(10^6 { m M}_{\odot})$ |
|--------------------------|------------------------------------------------------------------|---------------------------------------------------|
| $\mathrm{Mrk}142$        | $0.40^{+0.12}_{-0.14}$                                           | $2.17_{-0.75}^{+0.68}$                            |
| SBS1116 + 583A           | $1.05_{-0.29}^{+0.33}$                                           | $5.80^{+1.84}_{-1.58}$                            |
| $\operatorname{Arp}151$  | $1.22_{-0.22}^{+0.16}$                                           | $6.72^{+0.89}_{-1.19}$                            |
| $\mathrm{Mrk}1310$       | $0.41\substack{+0.12\\-0.13}$                                    | $2.24_{-0.69}^{+0.68}$                            |
| ${ m Mrk}202$            | $0.26\substack{+0.15\\-0.10}$                                    | $1.42_{-0.56}^{+0.83}$                            |
| $\operatorname{NGC}4253$ | $0.32^{+0.21}_{-0.20}$                                           | $1.76^{+1.15}_{-1.11}$                            |
| $\operatorname{NGC}4748$ | $0.47\substack{+0.16 \\ -0.21}$                                  | $2.57^{+0.90}_{-1.14}$                            |
| $\operatorname{NGC}5548$ | $14.9^{+3.4}_{-4.9}$                                             | $82^{+19}_{-27}$                                  |
| $\operatorname{NGC}6814$ | $3.36\substack{+0.54\\-0.56}$                                    | $18.5^{+3.0}_{-3.1}$                              |

<sup>a</sup>Assuming f = 5.5.

#### A new approach: Geometric and dynamical models



Pancoast, Brewer & Treu, 2011, 2014

#### Geometric and dynamical models: Application to Arp 151



Brewer, Treu, Pancoast et al 2011

#### Inferences about M<sub>BH</sub> and BLR structure 4



z (light days)

Pancoast et al. 2014b

### **Reverberation mapping**

- At z~0, several objects have been studied with sufficient quality (LAMP08/11 and Peterson Group)
- At z>0, very hard with traditional telescopes (e.g. Woo et al. 2007). Large program under way with LCOGT robotic telescopes (PI: Horne).





# Credits

- K.Schmidt (UCSB)
- R.Barone (Melbourne)
- M.Bradac (UCD)
- L.Bradley (STScI)
- G.Brammer (STScI)
- B.Brewer (Auckland)
- T.Collett (IoA)
- M.Dijkstra (UoO)
- A.Dressler (OCIW)
- A.Fontana (Roma)
- R.Gavazzi (IAP)
- A.Henry (NASA)
- A.Hoag (UCD)
- T.Jones (UCSB)
- P.Kelly (UCB)

- K.Huang (UCD)
- M.Malkan (UCLA)
- P.J.Marshall (Stanford)
- C.Mason (UCSB)
- A.Pancoast (UCSB)
- L.Pentericci (Roma)
- B.Poggianti (Padova)
- S.Rodney (JHU)
- M.Stiavelli (STScI)
- M.Trenti (Melbourne)
- A.vdLinden (Stanford/Dark)
- B.Vulcani (IPMU)
- X.Wang (UCSB)
- S.Wyithe (Melbourne)

borg.physics.ucsb.edu, glass.physics.ucsb.edu