MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Chemical Evolution and Star Formation History of the Disks of Spiral Galaxies in Local Group

Jun Yin (尹 君)

J.L. Hou, N. Prantzos, S. Boissier, R.X. Chang et al.

Shanghai Astronomical Observatory

11/18/2009

MW vs. M31

Disk of M33

Summary and Works in Future

Content

Brief Introduction

- Basic Models
- Basic Ingredients
- Why Do This?

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Content

Brief Introduction

- Basic Models
- Basic Ingredients
- Why Do This?

2 MW vs. M31

- Comparison of Their Observational Properties
- Models and Results
- Discussions and Conclusions

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Content

Brief Introduction

- Basic Models
- Basic Ingredients
- Why Do This?

2 MW vs. M31

- Comparison of Their Observational Properties
- Models and Results
- Discussions and Conclusions

3 Disk of M33

- Observational Properties of M33
- Models and Results
- Conclusions

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Content

Brief Introduction

- Basic Models
- Basic Ingredients
- Why Do This?

2 MW vs. M31

- Comparison of Their Observational Properties
- Models and Results
- Discussions and Conclusions

3 Disk of M33

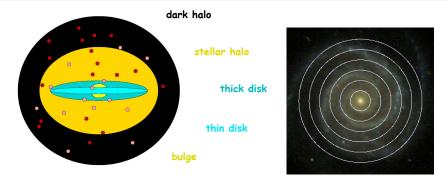
- Observational Properties of M33
- Models and Results
- Conclusions

MW vs. M31

Disk of M33

Summary and Works in Future

Brief Introduction on Chemical Evolution Models


MW vs. M31

Disk of M33

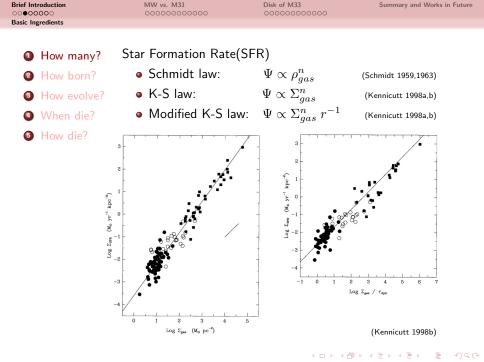
Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

General Picture

- Components: halo + thick disk + thin disk + bulge;
- Disks are built up by the infall of cooling primordial gas from their dark haloes;
- disk: exponential surface density profiles; concentric, independently evolving rings; no radial flow...

Brief Introduction OOOOOO Basic Models MW vs. M31

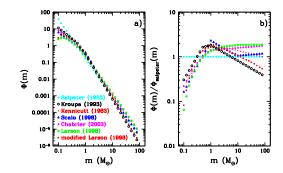

Disk of M33

Summary and Works in Future

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Basic Models

- Close-box model
- 0.6 No exchange $f_{in,col} \propto e^{-t/\tau}$ $f_{in,acc} \propto t \cdot e^{-t/\tau}$ Infall model 0.4 $\tau = 1$ Gyr • collapse: $f_{in, col} \propto e^{-t/\tau}$ ي. E • accretion: $f_{in, acc} \propto t \cdot e^{-t/\tau}$ 0.2 (peak at $t = \tau$) \bullet Gaussian infall: $f_{in,\ gau} \propto e^{\frac{-(t-t_0)^2}{2\sigma^2}}$ $\tau = 10 \text{ Gy}$ (peak at $t = t_0$) 0 5 10 0 t (Gyr)
- Outflow model
 - Outflow rate: $f_{out} = b \cdot \Psi(r, t)$



Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
0000000	00000000000	00000000000	
Basic Ingradients			

How many? Initial Mass Function(IMF)

e How born?

- I How evolve?
- When die?
- 6 How die?

Kroupa IMF(1993, KTG93):

$$\Phi(m) = \begin{cases} 0.58 \ m^{-1.3}, & (0.08 < m \le 0.5) \\ 0.31 \ m^{-2.2}, & (0.5 < m \le 1) \\ 0.31 \ m^{-2.7}, & (1 < m < \infty) \end{cases}$$

◆□> ◆□> ◆三> ◆三> ・三> のへで

Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
00000000	00000000000	00000000000	
Basic Ingredients			

How many?
 How born?

I How evolve?

5 How die?

- Theory of Stellar Evolution
 - Stellar nucleosynthesis theory
 - Stellar population synthesis theory

(Bruzual & Charlot 2003)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
0000000	00000000000	00000000000	
Basic Ingredients			

² How born?

- How evolve?
- When die?

6 How die?

Mass-lifetime relation

Comparison between Larson(1974)and Rana(1991)

$m(M_{\odot})$	0.1	0.5	1	2	8	30
$\tau_{m,Larson}(Gyr)$	$3.09\!\times\!10^5$	1.50×10^2	10.5	1.06	3.39×10^{-2}	5.13×10^{-3}
$\tau_{m,Rana}(Gyr)$	$7.10\!\times\!10^4$	$5.95\!\times\!10^2$	27.0	1.67	3.48×10^{-2}	5.70×10^{-3}

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Brief	Introduction
000	00000
Basic	Ingredients

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- I How evolve?
- When die?
- 6 How die?

Theory of Stellar Evolution (yield)

Iron-peak elements:

by SN Ia (intermediate-mass stars)

• α -elements:

by SN II (massive stars)

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Why Do This?

• Why Spiral galaxies in LG?

complement: Single vs. large sample; M31, M33 vs. MW; neighborhood: plenty of observations;

• *Why* phenomenological model of chemical evolution? simplicity: Complex processes are described by analytical laws; tool: observed present-day features, abundance, color...

• Aims?

Similarity and difference? Formation and evolution history? Unified framework?

MW vs. M31

Disk of M33

Summary and Works in Future

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Chemical Evolution of Disks of MW and M31

(Yin et al., 2009, A&A)

Brief Introduction MW vs. M31

•00000000000

Disk of M33

Summary and Works in Future

Comparison of Their Observational Properties

Global pictures

Milky Way

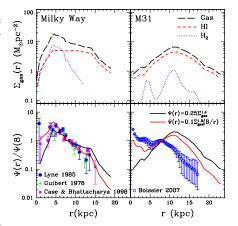
M31

・ロト ・四ト ・ヨト ・ヨト

э

Brief Introduction MW vs. M31

Disk of M33


Summary and Works in Future

Comparison of Their Observational Properties

Gas and SFR

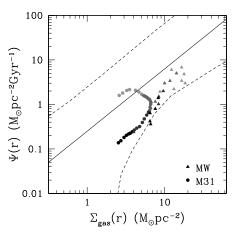
Observation of MW and M31 Disks

Observable	MW	M31
Total mass		
disk $(10^{10}~M_{\odot})$	3.5	\sim 7
$star(10^{10} M_{\odot})$	3.0	~ 6
$gas(10^{10} M_{\odot})$	~ 0.7	~ 0.6
$HI(10^{10} M_{\odot})$	0.4	~ 0.5
$H_2(10^{10} M_{\odot})$	0.11	$\sim 0.02-0.04$
Gas fraction	\sim 0.15 $-$ 0.2	~ 0.09
Total SFR (M_{\odot} yr $^{-1}$)	$\sim 1 - 5$	0.4 - 1.0
Scale-length (kpc)		
U		7.7
В	$4.0 \sim 5.0$	6.6
V	$2.5 \sim 3.5$	6.0
R	2.3	5.9
I		5.7
К	$2.3 \sim 2.8$	4.8
L		6.08
this work	2.3	5.5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MW vs. M31

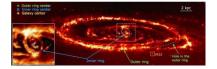
Disk of M33


Summary and Works in Future

Comparison of Their Observational Properties

Gas and SFR

Observation of MW and M31 Disks


Observable	MW	M31
Total mass		
disk $(10^{10} M_{\odot})$	3.5	~ 7
star $(10^{10} M_{\odot})$	3.0	~ 6
$gas(10^{10} M_{\odot})$	~ 0.7	~ 0.6
$HI(10^{10} M_{\odot})$	0.4	~ 0.5
$H_2(10^{10} M_{\odot})$	0.11	$\sim 0.02-0.04$
Gas fraction	\sim 0.15 $-$ 0.2	~ 0.09
Total SFR (M_{\odot} yr $^{-1}$)	$\sim 1 - 5$	0.4 - 1.0
Scale-length (kpc)		
U		7.7
В	$4.0\sim5.0$	6.6
V	$2.5 \sim 3.5$	6.0
R	2.3	5.9
I		5.7
К	$2.3 \sim 2.8$	4.8
L		6.08
this work	2.3	5.5

Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
0000000	00000000000	00000000000	
Comparison of Their Observational Prop	erties		

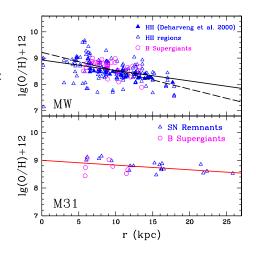
M31 may have experienced a major encounter with a nearby galaxy \sim 200 Myr ago:

- Two-ring-like structures observed by Spizer (bottom);
- Numerical simulation (right).

(Block et al. 2006)

・ロト・西ト・山田・山田・山口・

 Disk of M33


Summary and Works in Future

Comparison of Their Observational Properties

O abundance and gradient

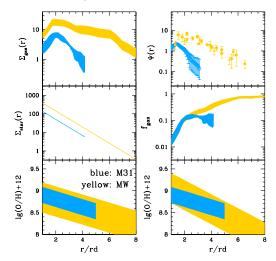
• MW has steeper gradient: $-0.04 \sim -0.07~{
m dex/kpc}$

• M31 has flatter gradient: -0.017 dex/kpc

ъ

Brief Introduction MW vs. M31

000000000000


Disk of M33

Summary and Works in Future

Comparison of Their Observational Properties

A unified description of MW and M31

•
$$r_{d,MW} = 2.3$$
 kpc, $r_{d,M31} = 5.5$ kpc

Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
0000000	00000000000	00000000000	
Models and Results			

Former works

- Plenty of observations on GC, halo, and outer disk;
- SFH of outer disk or halo;
- Few works on modeling disk, and the observational constraints used are limited:
 - SFR $\propto e^{-t/\tau}$: 5-11 kpc, produce G-dwarf problem(Diaz 1984)
 - **9** SFR $\propto \Sigma_{gas}$: biased infall; more gas in inner disk(Josey & Arimoto 1992)

9 SFR $\propto \Sigma_{gas}^2/R$: more gas in outer disk (Renda et al. 2005)

MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results

The Models in our work

Model parameters of disks of MW and M31 Individal Milky Way M31 Scale-length r_d (kpc) 2.3 5.5 Equivalent r_{eq} (kpc) 8.0 19.0Total disk mass ($10^{10} M_{\odot}$) 5.0 7.0 $V_c \, (km \, s^{-1})$ 220 226 General Prescription Free parameters Age of disk (Gyr) 13.5 IMF KTG93 Mass limits $(0.1 - 100) M_{\odot}$ Stellar yields vdHG97, WW95 Infall rate ($M_{\odot} \text{ pc}^{-2} \text{ Gyr}^{-1}$) $f(t,r) = A(r) e^{-t/\tau(r)}$ Metallicity of infall gas $Z_{f} = 0$ $\tau(r) = k \left(r/r_d \right)$ Infall timescale (Gyr) k = 2.5 $\epsilon \Sigma_{aas}^{1.5} (r/r_{eq\odot})^{-1}$ SFR (M_{\odot} pc⁻² Gyr⁻¹) $\epsilon_{MW} = 0.1, \epsilon_{M31} = 0.2$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー わらぐ

MW vs. M31

Disk of M33

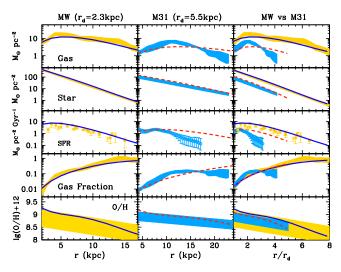
Summary and Works in Future

Models and Results

Radial profiles

1 Gas broad peak, $\sim 2r_d$

Star exponential disk


SFR

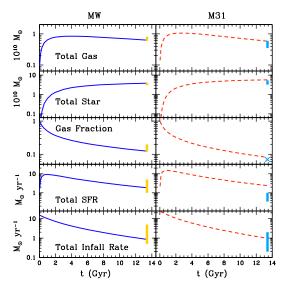
MW: fit well; M31: higher in outer disk, perturbations

Gas fraction

increase outwards; similar on scale of r_d

O abundance gradient similar on scale of r_d

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

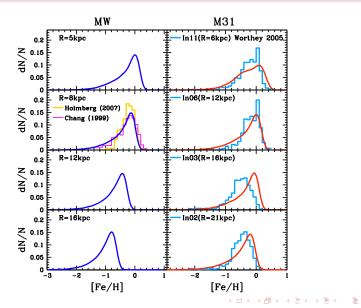

MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results

Time evolution of global properties


▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Brief Introduction MW vs. M31 Disk of M33 0000000000000000

Summary and Works in Future

Models and Results

Metallicity distribution function (MDF)

Brief Introduction	MW vs. M31	Disk of M33	Summary and Works in Future
0000000	0000000000	00000000000	
Discussions and Conclusions			

Discussions

Renda et al. (2005) have done similar research:

- Similarity: 'inside-out', M31 needs higher ϵ , predict higher gas and SFR in outer disk;
- Difference: two-phase model, SFR $\propto \Sigma_{qas}^2/R$, higher gas profile;
- Can't compare further: they do not provide SFR and stellar or gas fraction profiles.
- 2 MW is quiescent, M31 is more typical?(Hammer et al. 2007, Mouhcine et al. 2005);
- Such simple models are more suitable for quiescent disks, like MW.

Conclusions

- () Summarized and compared the observational data for MW & M31: show lots of similarities when expressed in term of r_d ;
- Ost radial profiles and global properties can be well described by our simple unified model, provided \u03c6_{M31} = 2 \u03c6_{MW};
- O Produce high SFR in the outer disk and globally, attribute this to perturbations;

Reproduce MDF well.

MW vs. M31

Disk of M33

Summary and Works in Future

Chemical and Color-Evolution of M33 Disk

MW vs. M31

Disk of M33

Summary and Works in Future

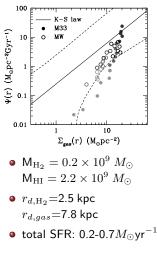
Observational Properties of M33

Global picture

- Sc II-III, $i = 54^{\circ}$, D=840 kpc
- $M_{tot} = 5 \sim 8 \times 10^9 \ M_{\odot}$
- $r_{d,tot} = 2.2 \sim 2.4 \text{ kpc},$ $r_{d,*} = 1.4 \sim 1.5 \text{ kpc}$
- No merging or interaction

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

MW vs. M31

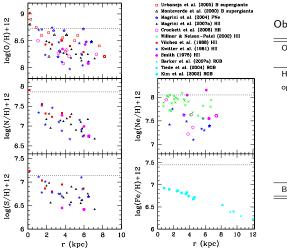

Disk of M33

Summary and Works in Future

Observational Properties of M33

Gas and SFR profiles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで


MW vs. M31

Disk of M33

Summary and Works in Future

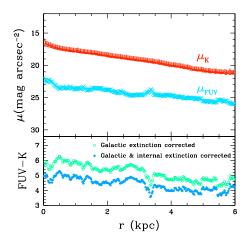
Observational Properties of M33

Metallicity and gradients

Observations of O gradient

Objects	radius	Oxygen
	(kpc)	$(dex kpc^{-1})$
HII,	1.0-5.7	-0.13
optical	0.2-6.5	$-0.070 {\pm} 0.008$
	0.4-6.5	$-0.127 {\pm} 0.011$
	0.3-11.0	$-0.19{\pm}0.03$
	0.7–7.3	$-0.012 {\pm} 0.011$
	0.7–7.3	$-0.054{\pm}0.011$
	0.7-3.0	$-0.19{\pm}0.08$
	3.0-7.3	$-0.038 {\pm} 0.015$
	0.2-6.2	$-0.027{\pm}0.012$
B stars	0.2-4.1	$-0.16 {\pm} 0.06$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで


MW vs. M31

Disk of M33

Summary and Works in Future

Observational Properties of M33

Surface brightness and color profiles

(Muñoz-Mateos et al. 2007)

э

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Models and Results

Former works

- Barker & Sarajedini (2008)
 - **(**) Main constraint: color-magnitude diagram $(r \sim 9 \text{ kpc})$;
 - ② Discussed different infall histories;
 - Main conclutions: >50% gas inflow takes place in the last 7 Gyr and <10% within the last 3 Gyr.</p>
- Magrini et al. (2007)
 - Main constraints: gas surface density profile, abundance gradients;
 - Ø Discussed abundance and gradients of different elements;
 - Main conclutions: accretion model is better than collapse one, continuous infall and SF.

Brief Introduction 00000000 Models and Results MW vs. M31

Disk of M33

Summary and Works in Future

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Models

Mass distribution

• $M_{tot}(t_g)=7\times 10^9\;M_{\odot}$, $r_{d,tot}=2.2\;{\rm kpc}$

•
$$\Sigma_{tot}(r, t_g) \propto e^{-r/r_{d,tot}}$$

Infall and outflow

- Infall rate: $f_{in,acc}(r,t) = A_{acc}(r) \cdot t \cdot e^{-t/\tau(\mathbf{r})}$
- Infall delay time: $t_d(r) = \mathbf{a} \cdot r$
- Outflow rate: $f_{out}(r,t) = \mathbf{b} \cdot \Psi(r,t)$

SFR

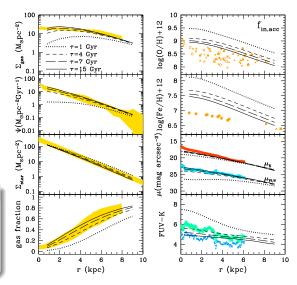
•
$$\Psi(r,t) = \epsilon \cdot \Sigma_{gas}^{1.4}(r,t) \left(\frac{r}{r_{d,tot}}\right)^{-1}$$

MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results


Does M33 form quickly?

infall	au	t_d	Ь	ε
$f_{in,acc}$	1,4,7,15	0	0	0.14

- $\tau \Downarrow \Rightarrow \mathsf{infall \ faster}$
 - 💶 present gas, SFR density 🄱
 - 🗿 present stellar density 🏠
 - 🗿 gas fraction \Downarrow
 - In a bundance ↑, steeper
 - **③** SB \Downarrow , color redder, steeper

Conclusions

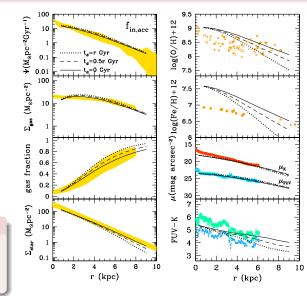
- NO, τ should be longer, slow accretion process;
- Problems: high Z, steep gradient, dark SB

MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results


Does whole disk form simultaneously?

infall	τ	t_d	Ь	ε
$f_{in,acc}$	r + 5	r, 0.5r, 0	0	0.14

- $t_d \Uparrow \Rightarrow$ infall begins later
 - evolution time shorter;
 - gas fraction [↑];
 - \bigcirc present stellar density \Downarrow ;
 - evolution inadequate, abundance ↓, steeper;
 - FUV slightly brighter, K slightly darker;
 - color bluer, steeper;

Conclusions

- Not necessary
- Problem: high Z, steep gradient

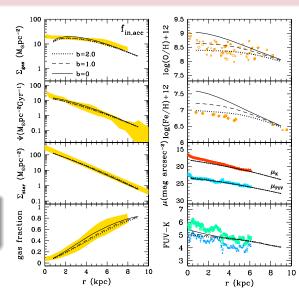
MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results

Does gas flow out?


infall	τ	t_d	ь	ϵ
$f_{in,acc}$	r + 5	0	2.0,1.0,0	0.14

- $b \Uparrow \Rightarrow \mathsf{more} \mathsf{ outflow}$
 - more gas infall
 - 2 gas, SFR, star change little
 - I abundance ↓, gradient flatter
 - SB, color change little

YES!

<ロ> <置> < 置> < 置> < 置> のへの

MW vs. M31

Disk of M33

Summary and Works in Future

Models and Results

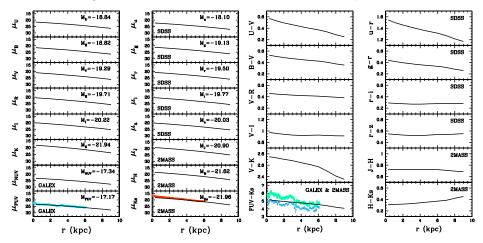
Best model

Best model of M33 disk

Basic parameters					
Age of disk (Gyr)	13.5				
Total mass $(10^9~M_{\odot})$	7.0				
Scale-length of total disk $r_{d,tot}$ (kpc)	2.2				
IMF	KTG93				
mass limits	$(0.1 - 100) \ M_{\odot}$				
Stellar yields	vdHG97, WW95				
${\sf SFR}~(M_\odot~{\sf pc}^{-2}~{\sf Gyr}^{-1})$	$\Psi(r) = 0.14 \Sigma_{gas}^{1.4} (r/r_{d,tot})^{-1}$				
Infall rate (M_\odot pc $^{-2}$ Gyr $^{-1}$)	$f_{in,acc} \propto t \cdot \mathrm{e}^{- ilde{t}/ au(r)}$				
Metallicity of infall gas	$Z_f = 0$				
Free parameters					
Infall time-scale (Gyr)	$\tau(r) = r + 5$				
Infall delay time (Gyr)	$t_d = 0$				
Outflow rate ($M_{\odot}~{ m pc}^{-2}~{ m Gyr}^{-1})$	$f_{out}(r) = \Psi(r)$				

MW vs. M31

Disk of M33


Summary and Works in Future

Models and Results

Best model

Surface Brightness of 16 bands

12 color profiles

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

MW vs. M31 000000000000 Disk of M33

Summary and Works in Future

Conclusions

- The disk of M33 should be formed by continuous accretion of gas (long infall time-scale) and whole disk should form simultaneously, consistent with former works;
- ⁽²⁾ Through the study of abundance, Outflow should play an important role in the evolution history of M33; Garnett(2002): Galaxies with $V_{rot} \leq 125 \text{ km s}^{-1}$ may lose a large fraction of their supernova ejecta; $V_{rot,M33} \approx 110 \text{ km s}^{-1}$;
- Olor gradients predicted by our model are flatter. Considering the uncertainty of extinction correction, our results are acceptable.

MW vs. M31

Disk of M33

Summary and Works in Future

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Summary and Work in Future

Brief Introduction	MW vs. M31	Disk of M33	Summary and Wo
0000000	00000000000	00000000000	

orks in Future

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Summary

Discussed the evolution and formation history of 3 local spirals in details.

- Similarities: common framework, infall + modified K-S law
- Oifferences: MW and M31: massive, earlier infall, no outflow; M33: less massive, infall late, outflow takes place.

Intrinsic reasons: Mass? surface density? size? Angular momentum?

Future Works

- Olor-evolution of MW and M31;
- Include more ingredients: halo+disk, disk+bulge, et al.;
- Within cosmological framework;
- Apply to other nearby spiral galaxies;
- Include interaction;
- 6

MW vs. M31

Disk of M33

Summary and Works in Future

メロト メポト メモト メモト

э

