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Chapter 1

Introduction

Cosmology has recently reached an important milestone. A wide variety of cosmological
observations now support a single model for the overall architecture of the observable
universe and the development of galaxies and other structures within it. According to this
so–called concordance model, the geometry of the observable universe is indistinguishable
from a flat geometry, implying that its total energy density is very close to the critical
density needed to close the universe. The two dominant components of the universe
appear to be a nonbaryonic form of dark matter, whose gravity is responsible for structure
formation, and a mysterious form of dark energy, whose pressure is currently causing the
expansion of the universe to accelerate. The mean density of baryonic matter is about
15% of the total amount of matter, and we can observe the baryonic matter only because
the gravitational attraction of nonbaryonic dark matter has drawn the baryonic gas into
deep potential wells, where a small fraction of it condenses into stars and galaxies.

This model explains many different features of the observable Universe, but it is not
entirely satisfying because the nature of the dark matter and the origin of the dark
energy remain unknown. In addition, many aspects of galaxy formation remain poorly
understood. Dark matter models successfully account for the spatial distribution of mass
in the universe, as traced by the galaxies, but they do not explain all the properties of
the galaxies themselves. Dark matter initiates the process of galaxy formation, but, once
stars begin to form, supernova explosions and disturbances wrought by supermassive black
holes can inhibit further star formation by pumping thermal energy into the baryonic gas.

In this framework, clusters of galaxies are unique tracers of cosmic evolution, since
they sit atop of the hierarchicy of cosmic structures, as the largest objects that have
had time to collapse. Galaxy clusters are then the biggest structures whose masses can
be reliably measured. Mass measurements of nearby clusters can be used to determine
the amount of structure in the universe on scales of 1014−15 h−1M⊙: the measurement of
the present–day cluster mass distribution and its evolution with redshift can be used to
measure the rate of structure formation, placing important constraints on cosmological
models. In addition, galaxy clusters can be used as standard candles which directly
trace the geometry of the Universe out to high redshift (z ∼ 1). Second, clusters are
essentially closed boxes that retain all their gaseous matter, despite the enormous energy
input associated with supernovae (SN) and active galactic nuclei (AGNs), owing to their
very deep gravitational wells. The baryonic component of clusters therefore contains a
wealth of information about the processes associated with galaxy formation, including
the efficiency with which baryons are converted into stars and the effects of the resulting
feedback processes on galaxy formation.
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2 CHAPTER 1. INTRODUCTION

The X–ray emission from the hot gas trapped in the potential wells of galaxy clusters
was first observed in the direction of Coma, Virgo, Perseus, and other rich clusters. At that
time, the astronomers postulated that the X-ray emission could be caused by two possible
phenomena, i) bremsstrahlung emission from a non-relativistic thermal population of
electrons or ii) inverse Compton scattering of the CMB photons by highly relativistic
nonthermal electrons. It was correctly attributed to thermal bremsstrahlung several years
earlier by Felten et al. (1966), who were inspired by a spurious X–ray detection of the
Coma cluster (see also Cavaliere et al., 1971). Statistical samples of clusters observed in
the X–rays were first obtained in the early 1970s, while the early 1990s new instruments
provided an important improvement in both imaging and spectroscopy. Finally in the last
decade there has been an enormous increase in the capabilities of X–ray instrumentation.
In fact, the present satellites allow the detection of clusters out to z > 1.2 and the
detailed study of gas properties (density, temperature and metal abundance) out to z ∼ 1
in fairly large samples. These observations provided the most of present knowledge on the
thermodynamic structure of galaxy clusters. At the same time, these new data showed
that the thermodynamical processes acting in galaxy clusters are much more complex than
previously thought. Still, a deeper understanding of the physics of baryons is required in
order to calibrate them as precision tools for cosmology.

X–ray emission is not the only means to study the thermal structure of the hot Intr-
aCluster Medium (ICM). Indeed, Sunyaev & Zeldovich (1972) suggested that the optical
depth to Compton scattering of the hot gas in galaxy clusters should be large enough
to boost very slightly the energy of the CMB photons. Since photon number must be
conserved, this energy boost would cause a distortion of the radiation spectrum which
is now called the Sunyaev–Zeldovich effect (SZ hereafter). However, early predictions of
the expected SZ magnitude were somewhat optimistic, and the effort among observers
to detect the SZ in galaxy clusters proceeded more slowly than expected. Over a decade
passed before the first reliable detections of the SZ were made by Birkinshaw et al. (1984).
Much progress has been done since that time and SZ measurements are now routinely
performed by several telescopes. However, the low resolution of such instruments (com-
pared to the X–ray ones) has represented so far the main limitation to fully exploiting
the potential of SZ measurements.

The next decade promises to be very exciting for the study of galaxy clusters and
cosmology, using both SZ and X–ray observations. A new generation of SZ telescopes
is coming, which will be characterized by a better resolution and higher sensitivity than
present instruments. Hence, deep surveys looking for the SZ effect will be finding thou-
sands of clusters to distances well beyond a redshift of z = 1. Also, dedicated X–ray
satellite missions to survey a large fraction of the sky for distant clusters are currently
being planned or already in the phase of realization (e.g. eRosita, Predehl et al., 2006).

X–ray and SZ observations have different dependence on gas properties (density and
temperature), thus their combination potentially represents a powerful instrument in
cluster studies. However, the low resolution of SZ telescope now available does not allow
a detailed study of cluster structure. The major application of X–ray/SZ observations
has been the measure of the Hubble constant (Bonamente et al., 2006, and references
therein), since the method does not require a resolved SZ profile. The situation will be
much improved by the upcoming generation of SZ telescopes, which will provide high–
resolution SZ images, opening the way for new applications. In particular, one interesting
direction to explore will be the measure of temperature profiles (and then total mass
profiles) by relying only on X–ray surface brigthness and SZ data, thus avoiding the use
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of X–ray spectroscopy. The technique will also represent an improvement in the analysis
of the cluster outskirts.

However, in order to fully exploit the potential of future observations, both the physics
of the ICM and the possible instrumental systematics need to be fully understood. In
this context cosmological hydrodynamical simulations provide an ideal test–bed to work
out predictions on the capabilities of future X–ray and SZ observations to shed light on
the dark sector of cosmological models. In this perspective, in this Thesis we present a
study of two different techniques which make use of the combination of X–ray and SZ
observations. The first method aims at measuring the angular diameter distance of galaxy
clusters, thus using them as standard candles to probe the Universe geometry. The second
is a deprojection technique which recovers gas density and temperature and total mass
profiles, thus allowing on one hand to study in detail the thermodynamic structure of the
ICM and on the other hand to have accurate mass estimates.

This Thesis is structured as follows.

Chapter 2 provides an introduction to cluster studies. It first describes the properties
of the ICM in the X–ray band and through observations of Sunyaev–Zeldovich (SZ) effect.
Then current X–ray observations are reviewed, together with their most important out-
comings, which represent most of the present knowledge on the thermodynamics of the
ICM. Then the current status of SZ observations and upcoming experiments are reviewed.
Finally, the use of galaxy clusters is discussed, with particular attention to those aspects
which are more relevant for the work presented in this Thesis.

Chapter 3 presents the set of simulated cluster which are used through the Thesis
work. First it provides a description of the most important features of the TREESPH
code GADGET2 code, with which the simulations have been performed, and the physical
processes implemented to achieve a realistic description of the ICM (namely radiative
cooling, star formation and galactic winds). Then, the set of galaxy clusters identified in
the simulation box is presented. Finally, the procedure used to carry out projected maps
of X–ray surface brightness, thermal SZ (tSZ hereafter) and temperature are described.

Chapter 4 presents a study on the systematic effects in recovering the angular diameter
distance by using a combination of X–ray and tSZ data. After a description of the method,
we present our results, which are obtained using both an isothermal and a polytropic
model for the gas thermal structure. Finally the implications of these results for the
estimate of cosmological parameters are discussed, through the fitting of the angular–
diameter/redshift relation.

Chapter 5 presents a deprojection technique which has been developed to recover the
gas density and temperature from the X–ray surface brightness and the tSZ signal, thus
avoiding the use of X–ray spectroscopy. The method is described in detail and then
tested against both an analytical cluster model and a set of simulated galaxy clusters.
Furthermore, we discuss the effects of cluster elongation on our results.

Chapter 6 presents a development of the deprojection technique of Chapter 5, which
includes the solution of the hydrostatic equilibrium equation. The method provides the
gas density and temperature and the total mass profiles symultaneously. Two different
approaches to mass modelling are discussed. The first one is model–independent, while
the second one assumes an analytical model for the total mass profile. The two methods
are described and tested against the set of simulated clusters.

Chapter 7 draws the main conclusions of the work presented in the Thesis and high-
lights the future perspectives for its development in the next years.
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Finally, the Appendix provides an introduction to cosmology. In particular, we briefly
review the cosmological model and the process of formation of the large scale structure,
so as to describe the basic concepts of cosmology, which are used through the Thesis.



Chapter 2

Clusters of galaxies: an overview

Galaxy clusters have typical masses of 1014÷15 h−1M⊙, dominated by the dark matter
component (∼ 80%), while baryons only constitute ∼ 15% of the total mass budget.
Most of these baryons (∼ 12% of the total mass) are in the form of a hot and diffuse
gas, the IntraCluster Medium (ICM). During the process of cluster formation, this gas
is shocked by merging and heated by adiabatic compression, thus reaching the virial
temperature (from ∼ 1 keV to ∼ 10 keV) and correspondingly a very low density, of the
order of one particle per 10−3 cm3. Only a very small fraction of baryon gas (∼ 3% of
the total mass) cools to form stars and galaxies, which are the only component visible at
optical wavelengths.

Galaxy clusters represent powerful probes for cosmology, for many reasons. First of
all, their mass distribution and how it evolves with redshift are solid predictions of the
standard cosmological model. Their observation thus provides a measure of fundamental
cosmological parameters. Second, the matter content in galaxy clusters is considered as a
fair sample of that of the Universe and then they can be used to measure the fraction of
mass in baryons. Finally, galaxy clusters can be used as standard rods to directly probe
the geometry of the Universe. However, to fully exploit the potential of galaxy clusters
as cosmological probes it is necessary to achieve an accurate knowledge of their structure
and properties.

In a simple picture of structure formation, baryonic and dark matter collapse under
the only action of the gravitational attraction. During this process, the gas is shocked in
accretion and/or merging events and heated by adiabatic compression. Since gravity does
not have any preferred scale, this scenario predicts the formation of self–similar systems
which basically appear as scaled versions of each other. By assuming that the gas lies
in hydrostatic equilibrium within the dark matter potential wells, this scenario predicts
self–similar scaling relations also between gas properties and total mass (see Rosati et al.,
2002; Voit, 2005, for reviews).

However, the observed scaling relations deviate from those predicted by self–similar
scaling. This is a clear indication that non–gravitational processes, like radiative cooling
and heating from AGNs or SNe, are acting in the core of galaxy clusters. The correct
interpretation of these processes makes galaxy clusters interesting astrophysical laborato-
ries, where to study, among other things, the complex interplay between the ICM and the
galaxies. At the same time, it indicates that an accurate study of the thermodynamical
structure of the ICM is required in order to use galaxy clusters as precision tools for
cosmology.

In this Chapter we provide an introduction to cluster studies with particular enphasis

5



6 CHAPTER 2. CLUSTERS OF GALAXIES: AN OVERVIEW

on X–ray and SZ observations. It is structured as follows. The physics behind the X–
ray and Sunyaev-Zeldovich properties of galaxy clusters is described in Sections 2.1 and
2.2, respectively. Section 2.3 reviews the status of present and upcoming X–ray and SZ
observations and describes the properties of the hot gas in galaxy clusters. Section 2.4 is
devoted to a short overview of the applications of galaxy clusters as tools for cosmological
studies.

2.1 X–ray emission

Given its high temperature and very low density, the ICM gas is optically thin and fully
ionized. Electrons and heavy ions are in a state of collisional equilibrium. Radiation
is emitted essentially through the process of thermal bremsstrahlung. For a gas at tem-
perature T , the emissivity per unit frequency ν is given by (e.g. Rybicki & Lightman,
1986):

jν = 5.44 · 10−52Z2neniT
−1/2g e−hν/kT W/m3/Hz (2.1)

where Z2 is the mean–squared atomic charge on the ions. The Gaunt factor, g ∼ 1.2 is
a dimensionless quantity which depends on the range of distances between electrons and
ions at which the scatter process occurs, with a weak dependence on ν. The emissivity is
proportional to the square of gas density, since the rate of collisions is proportional to the
product of the electron density ne and the ion density ni. Examples of X-ray spectra for
typical cluster temperatures are shown in figure 2.1. Note that, due to the exponential
cut–off of the bremsstrahlung emission, the continuum is very sensitive to temperature
for energies greater than T and rather insensitive to it at lower energies.

The emissivity in a particular band is usually rewritten as

ǫν = nenHΛ(ν, T ) (2.2)

where ne and nH are the electron and proton number density and Λ(T ) is the cooling
function, which depends on the frequency of the observations and the temperature of the
gas. When integrated over a wide range of frequencies, it scales as ǫ ∝ T 1/2.

The observed surface brightness is given by the integral of the emissivity along the
line of sight:

SX =
1

4π(1 + z)4

∫

los
nenHΛ(T )dl (2.3)

Note that it decreases with redshift as (1 + z)−4, owing to the expansion of the Universe
which causes a loss of photon energy. This represents a limit for X–ray astronomy in the
detection of clusters at very high redshift.

X-ray surface brightness and spectrum are powerful sources of information about the
ICM in galaxy clusters.

• Gas density. The emissivity is not very sensitive to T at low energy. Therefore
X-ray images or surface brightness profiles extracted in a soft energy band (e.g.
0.5− 2 keV) are used to determine the gas density distribution. X–ray observations
are characterized by an excellent resolution, so the X-ray images are ideally suited
for a detailed description of the ICM morphology. The gas density is computed
from the emission measure EM =

∫

n2
e dl, which represents the normalization of
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Figure 2.1. The X-ray emission from a thin plasma with 0.35 solar abundance at different

temperatures, T = 1, 2 and 8 keV (plot from Arnaud, 2005).

the X–ray spectrum (see eq. 2.1). It can be deduced from the surface brightness,
SX , according to

EM =
4 π (1 + z)4 SX

Λ(T, z)
. (2.4)

Since Λ(T, z) depends only weakly on the temperature in the soft band, in this
equation one can generally use the average cluster temperature.

• Gas temperature. Its measurement requires spectroscopic data. The temperature
is derived by fitting the observed spectrum with a thermal emission model convolved
with the instrument response (i.e. taking into account how the effective area and
spectral resolution vary over the energy range). The temperature is constrained by
the position of the exponential cut-off in the spectrum. In order to have a proper
determination of the temperature, one needs spectroscopic instruments which are
sensitive up to energies greater than T , i.e., typically 10 keV. The ICM is not strictly
isothermal. This means that a temperature inferred from an isothermal fit to the
data is actually a mean value along the line of sight and within the cluster extraction
region (Mazzotta et al., 2004). How this mean is computed in detail is a crucial
point when comparing simulations to observations. In Section 3.4 we will discuss
three definitions of mean temperature which are commonly used in the analysis of
cluster simulations. Each of these definitions has different properties, which could
in principle lead to biases in the comparison between observations and simulations.
In Chapter 4 we present a study on the accuracy in recovering the angular diameter
distance from combined X–ray and tSZ observations. Since this type of measure
requires a fit of the temperature profile, we perform our analysis by adopting each
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Figure 2.2. The CMB spectrum, undistorted (dashed line) and distorted by the tSZ (solid line).

The tSZ distortion shown is for a model cluster 1000 times more massive than a typical massive

galaxy cluster (plot from Carlstrom et al., 2002).

of these mean temperature definitions, in order to understand which is their impact
on our final results.

• Heavy elements. In addition to the continuum generated by the bremsstrahlung
emission, the X–ray spectrum of galaxy clusters presents a number of emission lines,
which are due to the presence of heavy elements. The only line that clearly stands
out at all temperatures is the Iron K line complex around 6.7 keV (see figure 2.1).
We can also observe the K lines of other elements (O, Si, S, with H and He–like
ionization states), as well as the L-shell complex of lower ionization states of Iron
(T ∼ 1−2 keV. However the intensity of these lines rapidly decreases with increasing
temperature. Except for cool clusters (T . 4keV) or in the cooling core present in
some clusters, it is difficult to measure the abundance of elements other than Iron
because they are completely ionized. For a review on the measure of metallicity in
the ICM, see e.g. Mushotzky (2004).

2.2 The Sunyaev–Zeldovich effect (SZ)

2.2.1 The thermal Sunyaev–Zeldovich effect (tSZ)

The thermal Sunyaev–Zeldovich (tSZ) effect (Sunyaev & Zeldovich, 1972) is the distortion
of the Cosmic Microwave Background (CMB) spectrum due to the scattering of the CMB
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Figure 2.3. Spectral distortion of the CMB radiation due to the SZ effect. The left panel shows

the intensity and the right panel shows the Rayleigh Jeans brightness temperature. The thick

solid line is the thermal SZ and the dashed line is the kinetic SZ. For reference the 2.7 K thermal

spectrum for the CMB intensity scaled by 0.0005 is shown by the dotted line in the left panel.

The cluster properties used to calculate the spectra are an electron temperature of 10 keV and

density of 10−3cm−3, a Comptonization parameter y = 10−4, and a peculiar velocity of 500 km/s

(plots from Carlstrom et al., 2002).

photons off a population of thermal electrons. The distortion is represented in figure 2.2
as computed for a model cluster being 1000 times more massive than a typical massive
cluster, to make it clearly visible. This effect has now been detected for a fairly large
number of clusters of galaxies (e.g. Rephaeli, 1995; Birkinshaw, 1999; Carlstrom et al.,
2002, for reviews).

The spectral distortion is described as a variation of the CMB temperature at different
frequencies (which are expressed by the dimensionless frequency x = hν/kBTCMB):

∆TtSZ

TCMB
= f(x)y (2.5)

where the function f(x) describe the frequency dependence, while theComptonization
parameter y measures the entity of the effect. The typical size of this distortion for a
thermal distribution of electrons with temperature of about 10 keV is at the level of
y ∼ 10−4.

The Comptonization parameter y is directly proportional to the pressure integrated
along the line of sight:

y =

∫

ne
kBTe

mec2
σT dℓ (2.6)

where kB is the Boltzmann constant, σT is the Thomson cross section, me is the mass
of the electron, c is the speed of light. By definition, it provides a redshift–independent
measure of the total thermal content of the cluster.

The frequency dependence is given by

f(x, Te) =

(

x
ex + 1

ex − 1 − 4

)

[1 + δ(x, Te)] (2.7)
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where δ(x, Te) is a correction due to relativistic effects. In the non–relativistic limit the
shape of the distortion is independent of the temperature.

Expressed in units of specific intensity, as is usually done for SZ observations in the
millimetric band, the tSZ distortion becomes:

∆ItSZ = g(x)I0y (2.8)

where I0 = 2(kBTCMB)3/(hc)2 and the frequency dependence is given by

g(x) =
x4ex

(ex − 1)2
f(x)(1 + δtSZ(x, Te)) (2.9)

The function g(x) is plotted in figure 2.3 with the solid line, for a typical cluster having
a Comptonization parameter y = 10−4 (T = 10 keV and ne = 10−3cm−3). The tSZ has a
unique spectral signature with a decrease of the CMB intensity at frequencies ∼< 218 GHz
and an increase at higher frequencies. In the Rayleigh–Jeans part of the spectrum and
in the non–relativistic approximation, the function becomes f(x) → −2 for x → 0. The
tSZ spectrum is peculiar and may be easily disentangled from primary CMB temperature
fluctuations, if a multiwavelength observation is available.

Note that the tSZ effect is independent of redshift. In fact, the CMB is more intense
at high z by a factor of (1+z)4, thus the amount of the tSZ effect ∆ItSZ for a given cluster
at redshift z will be enhanced by the same factor (see eq. 2.8). The intensity variation
will dim with redshift, as (1 + z)−4, thus giving the same signal as a low z object having
the same intrinsic properties.

Relativistic correction (e.g. Itoh et al., 1998) are important if the cluster temperature
is Te∼> 5 keV. In the extreme case of ultrarelativistic electrons, the tSZ spectrum turns
out to be the same as the CMB one, but inverted, since all the scattered photons become
so energetic that they exit from the wavelength range of the CMB.

Particularly relevant for finding clusters with a tSZ survey is the signal integrated
over the solid angle of the cluster. Because the tSZ signal is the integrated pressure,
integrating over the solid angle of the cluster provides a sum of all the electrons in the
cluster weighted by temperature. This provides a relatively clean measure of the total
thermal energy of the cluster. Integrating the tSZ over the solid angle of the cluster,
dΩ = dA/D2

A, gives:

YtSZ ∝
∫

∆TtSZdΩ ∝ Ne〈Te〉
D2

A

∝ M〈Te〉
D2

A

(2.10)

where Ne is the total number of free electrons in the clusters, 〈Te〉 is the mean electron
temperature, DA is the angular diameter distance, and M is the mass of the cluster
(assuming that the fraction of free electrons is constant, M can be considered as either
gas or total mass). The integrated tSZ flux turns out to be directly proportional to the
temperature weighted mass of the cluster divided by D2

A. The angular diameter distance
DA(z) is fairly flat at high redshift. Also, a cluster of a given mass will be denser and
therefore hotter at high redshift because the universal matter density increases as (1+z)3.
Therefore, one expects an SZ survey to detect all clusters above some mass threshold with
little dependence on redshift.
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Figure 2.4. Chandra images of three relaxed galaxy clusters Abell 2029, MS 2137 and MS 1137,

having redshift z = 0.08, z = 0.3 and z = 0.8 respectively, from the Chandra Photo Album.

2.2.2 The kinetic Sunyaev–Zeldovich effect

If the cluster is moving with respect to the CMB rest frame there will be an additional
spectral distortion due to the Doppler effect of the cluster bulk velocity on the scat-
tered CMB photons, which is called the kinetic SZ effect (kSZ). The dashed line in figure
2.3 reports the kSZ distortion, as a function of frequency, for a cluster having a typical
peculiar velocity vpec = 500 km/s. One may notice that it presents a spectrum which
is still described completely by a Planck spectrum, but at a slightly different temper-
ature, lower (higher) for positive (negative) peculiar velocities (Sunyaev & Zeldovich,
1972; Birkinshaw, 1999). If relativistic effects are not taken into account the effect is
undistinguishable from an intrinsic fluctuation of the CMB temperature.

In the non-relativistic limit, the amplitude of the effect is given by:

∆TkSZ

TCMB
= τe

(vpec

c

)

(2.11)

where vpec is the peculiar velocity of the cluster along the line of sight and τe is the optical
depth along the line of sight. Relativistic perturbations to kSZ are due to the Lorentz
boost to the electrons provided by the bulk velocity (Nozawa et al., 1998; Sazonov &
Sunyaev, 1998). For a hot cluster (T = 8 keV) with a large peculiar velocity (vpec =
1000 km/s) the effect is about a 9% correction to the non-relativistic term.

2.3 Status of observations

2.3.1 X–rays

X-rays are absorbed by the Earth’s atmosphere. Therefore, X-ray observatories need to
be placed on board satellites. Three X–ray dedicated satellites are now in operation,
XMM–Newton1, Chandra2 and Suzaku3.

The XMM–Newton and Chandra operate both from 1999 and most of the present
knowledge on the ICM in galaxy clusters is based on observations performed with these
telescopes. The two observatories are complementary under many aspects. Chandra has

1http://www.esa.int/science/xmmnewton
2http://chandra.harvard.edu
3http://www.astro.isas.jaxa.jp/suzaku/
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an extremely good spatial resolution of ∆θ = 0.5”, compared to 8” for XMM–Newton.
The strength of XMM–Newton is its exceptional collecting area and thus sensitivity: three
high–throughput telescopes are operating in parallel. The field of view is 30′ in diameter,
well adapted to cluster studies. Chandra has only one telescope, with a smaller field of
view of 17′ × 17′ (for the ACIS-I instrument) and an effective area typically 3(5) times
lower than XMM–Newton at 1.5(8) keV. Figure 2.4 shows the X–ray images of three
relaxed galaxy clusters obtained with the Chandra satellite. The images highlight the
decrease of the signal with increasing redshift of the cluster.

The scientific payload of Suzaku initially consisted of three distinct co-aligned scientific
instruments (Mitsuda et al., 2007). There are four X-ray sensitive imaging CCD cameras
(X-ray Imaging Spectrometers, or XISs), having a good spatial resolution (∆θ = 2′) but
with moderate energy resolution, over a 17.8′ × 17.8′ field of view. Each XIS is located in
the focal plane of a dedicated X-ray telescope. The second instrument is the non-imaging,
collimated Hard X-ray Detector (HXD), which extends the bandpass of the observatory
to much higher energies with its 10-600 keV pointed bandpass. A third instrument,
the X-Ray Spectrometer (XRS) was planned to provide higher spectral resolution, but
unfortunately is no longer operational, due to a loss in the liquid helium cryogen.

In addition to these telescopes, cluster X–ray studies are also performed by using
the X–ray Telescope4 (XRT, Gehrels et al., 2004) on board the SWIFT satellite. The
telescope is dedicated to the detection of the X–ray afterglow of gamma ray bursts, but
it is also used for X–ray cluster studies.

As compared to the previous generation of satellites, present instruments represent a
giantic step forward in term of sensitivity and spatial resolution. The ROSAT5 satellite
(Truemper, 1982) had good imaging capability (∆θ = 15” for the PSPC instrument)
but much lower effective area and very poor spectroscopic capability. The high energy
cut-off of the telescope was E ∼ 2 keV, so that accurate temperature measurements were
limited to cool clusters. ASCA was the first X–ray observatory (Tanaka et al., 1994)
with telescopes working up to 10 keV and a CCD camera at the focal plane at one of the
telescopes (the other telescopes were equipped with proportional counters). As compared
to spectroscopy made before with collimated spectrometers, the gain in sensitivity was
very important. It was also the first time one could do spatially resolved spectroscopy of
clusters. However, this was limited by the relatively large and energy dependent Point
Spread Function. The spatial resolution of Beppo–SAX6 was better, but above all it had
the capability of observing sources over more than three decades of energy, from 0.1 to
200 keV (Boella et al., 1997).

With present instruments, gas density and temperature structure (and thus mass
profiles) can be measured in nearby clusters over a wide radial range, from very deep
inside the core, at the sub–kpc scale with Chandra (e.g Fabian et al., 2001), up to very
close to the virial radius with XMM-Newton, even in low mass systems (e.g. Solovyeva
et al., 2007). Last but not least, we have now precise temperature maps for unrelaxed
objects and we can resolve very sharp density features. With XMM–Newton it is possible
to perform spatially resolved spectroscopy in cluster cores which allowed to shed light on
the complex thermal processes ongoing in this regions, which we discuss below (Peterson
et al., 2001; Böhringer et al., 2002; Markevitch & Vikhlinin, 2007). We can also measure
basic cluster properties up to high z (z ∼ 1.3) and down to the ROSAT detection limit

4http://www.swift.psu.edu/xrt
5http://heasarc.gsfc.nasa.gov/docs/rosat/rosat.html
6http://bepposax.gsfc.nasa.gov
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(with XMM-Newton). This includes morphology from images, gas density radial profile,
global temperature and gas mass (e.g. Arnaud et al., 2002; Rosati et al., 2004), from
which total mass and entropy can be derived by assuming isothermality. For the brighter
distant clusters, it is also possible to obtain crude temperature profiles (Arnaud et al.,
2002) or maps (Maughan et al., 2003). Finally, X-ray selection is currently the optimal
technique for constructing large, well-defined samples of distant clusters (see Rosati et al.,
2002; Borgani, 2006, for reviews). Clusters at all redshifts appear as extended sources
in XMM-Newton and Chandra images. However, only Chandra has the capability to
perfectly remove point source contamination. The large collecting area of XMM–Newton
allows one to reach high sensitivity. For instance, with this instrument Mullis et al. (2005)
discovered the cluster XMMU J2235.3-2557 at z = 1.4. This object has an X–ray flux
of fx = (3.6 ± 0.3) · 1014 erg/cm2, which corresponds to a rest-frame X-ray luminosity
of LX = (3.0 ± 0.2) · 1044h−2 erg/s in the 0.5 − 2 keV band, and a temperature of
T = 6.0 ± 2.5 keV.

The near future will see the launch of the extended ROentgen Survey with an Imaging
Telescope Array7 (eROSITA, Predehl et al., 2006). The mission will conduct an all–sky
survey in the soft X–ray band and thereafter it is foreseen to conduct follow-up pointed
observations of selected sources. The proposed orbit provides an order of magnitude
lower particle background than those of Chandra and XMM–Newton, which will allow
the detailed study of low–surface–brightness diffuse objects. The telescope is composed
by 7×35cm mirrors modules each having its own CCD-detector in the focus. The spatial
resolution will be of θ ∼ 20′′ mean over the field–of–view (θ ∼ 15′′ on–axis), the spectral
resolution will be of 130 eV at 6 keV. The original plan of eROSITA observations com-
prised three surveys: i) An all-sky survey which is expected to detect about 30,000 galaxy
clusters, down to a flux of f = 1.6 · 10−13 erg/s/cm2 ii) a deeper, high galactic latitude
survey to discover about 70,000 galaxy clusters down to a flux of f = 3 ·10−14 erg/s/cm2,
covering 20,000 deg2; iii) a 200-300 deg2 deep survey close to the south Galactic pole,
which will reach very high sensitivity, having a flux limit of f = 8 · 10−15 erg/s/cm2.
However, for efficiency reasons a continuous scan of the sky is planned now. The pattern
will be similar to ROSAT, but with poles roughly between ecliptic and galactic poles
(more interesting regions of the sky). Also the poles will be smeered out to about 200
deg2 areas. This produces effectively a shallower all–sky survey and two regions about a
factor of 10 deeper.

In the following, we present the main observational properties of the ICM, inferred
from the analysis of X–ray observations.

The gas density profiles

The gas content and density distribution can be studied through the emission measure
along the line of sight EM(r) =

∫ Rvir

r n2
e dl, which is easily derived from the X-ray surface

brightness profile (see Section 2.1). The scaled EM profiles of hot clusters measured with
ROSAT were found to be similar in shape outside typically (0.1 − 0.2)Rvir (Neumann
& Arnaud, 1999; Vikhlinin et al., 1999; Neumann & Arnaud, 2001). There is a large
dispersion in the central regions, generally linked with the presence of a cooling core (see
below). Outside that region the universal profile is well fitted by the β–model (Cavaliere

7http://www.mpe.mpg.de/projects.html#erosita
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Figure 2.5. Gas temperature profiles for two sets of relaxed clusters, observed with the XMM–

Newton satellite (left panel, from Pratt et al., 2007) and with the Chandra satellite (right panel,

from Vikhlinin et al., 2005).

& Fusco-Femiano, 1976):

ne(r) = ne0

[

1 +

(

r

rc

)2
]−3β/2

, (2.12)

where ne0 is the electron number density in the cluster centre, r is the distance from the
cluster centre, rc is the core radius and β is the power–law index. Typical values are
β = 2/3 and rc ∼ 0.12Rvir . In addition, a probable steepening of the profiles has been
observed at large radius, which should be taken into account when using these profiles for
high precision mass measurements (Neumann, 2005; Vikhlinin et al., 2006).

The reconstructed gas density profiles are generally very accurate. However it has
been pointed out that the presence of unresolved gas clumps has the effect of boosting
the X–ray signal and, then, to lead to an overestimate of gas density, since it is basically
inferred from the total X–ray flux. In Chapter 5 the amount of this bias is checked by
applying a deprojection algorithm to X–ray and tSZ images.

The temperature profiles

There is also a similarity in the temperature profiles of hot clusters beyond the cooling
core region (e.g. De Grandi & Molendi, 2002), as one can clearly see in figure 2.5, showing
the temperature profiles of two sets of nearby clusters (z < 0.2), analyzed by Vikhlinin
et al. (2005) and by Pratt et al. (2007). In relaxed clusters, there is usually a drop
of temperature towards the centre (r . 0.1Rvir). This corresponds to the cool core
region (see below). There is also a tendency for clusters with cool cores to have flatter
temperature profiles at large scale than non–cool core clusters, suggesting that the profile
shape depends on the cluster dynamical state (e.g. De Grandi & Molendi, 2002). The
self-similarity of the shape of the temperature profiles seems to be confirmed by several
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Figure 2.6. Left panel: comparison of entropy measured at 0.1R200 and the self–similar prediction

in a large sample of clusters (Voit & Ponman, 2003). The small points represent entropy measured

at 0.1R200 in a sample of 64 clusters. The points with errorbars represent the mean entropy

measurement in temperature bins of eight clusters each. The dotted line represents the self–

similar relation, as predicted by simulations of clusters without radiative cooling and feedback.

The solid line represent the cooling threshold Kc(T ), defined to be the entropy at which the

cooling time equals 14 Gyr (Voit & Ponman, 2003). The short–dashed line shows the predicted

entropy at 0.1r200 in the model of Voit & Bryan (2001). Right panel: entropy profiles of a set of

nearby clusters scaled using the empirical entropy scaling S ∝ h(z)4/3T 0.65 (Pratt et al., 2006).

The shaded grey area corresponds to the region enclosed by the mean plus/minus the 1σ standard

deviation. The dashed line denotes S ∝ R1.08.

independent studies (e.g. Allen et al., 2001; Vikhlinin et al., 2005; Piffaretti et al., 2005;
Pratt et al., 2007; Zhang et al., 2006) for relaxed clusters. However, no consensus has
been reached yet on the exact shape of the profiles.

In X–ray studies the temperature is usually obtained by fitting a single temperature
model to the projected spectrum. In Chapter 5 we propose a geometrical deprojection
technique, applied to combined X–ray and tSZ images, which avoids the use of X–ray
spectroscopy. This would offer two important advantages: i) it should allow to probe
more easily the regimes of low X–ray surface brightness (i.e. external cluster regions
and high–redshift galaxy clusters), which are hardly accessible to spatially resolved X–
ray spectroscopy; ii) it yields a temperature which is basically mass–weighted, while the
spectroscopic one may be biased low by the presence of relatively cold clumps embedded
in the hot ICM atmosphere (see Section 3.4).

The gas entropy

In cluster studies the entropy is traditionally defined as S = T/n
2/3
e , which is related to the

true thermodynamic entropy via a logarithm and an additive constant. It is a fundamental
characteristic of the ICM, because it is a probe of the thermodynamic history of the gas
(e.g. Voit et al., 2002). In the standard self-similar picture, which only takes into account
the effects of gravity, the entropy should scale simply as S ∝ h(z)4/3T , where h(z) is the
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Hubble constant (see Section A.5).

Since the pioneering work of Ponman et al. (1999), it is known that the entropy
measured at 0.1Rvir exceeds the value attainable through gravitational heating alone,
an effect that is especially noticeable in low mass systems. In fact, the observed S − T
relation follows a power law but with a shallower slope than what expected from self–
similar scaling. As shown in the left panel of figure 2.6, the entropy measured at 0.1Rvir

scales instead as S ∝ T 0.65 (Ponman et al., 2003), suggesting that in addition to the
gravitational effect, the gas history depends on the interplay between cooling and galaxy
feedback mechanisms (see e.g. Voit, 2005).

The right panel of figure 2.6 shows the radial entropy profiles of a set of galaxy clusters.
Except in the very centre, they are self-similar in shape with close to power law behavior
in the 0.05 Rvir < r < 0.5 Rvir range (e.g. Piffaretti et al., 2005; Pratt et al., 2006).
The observed slope that is slightly shallower than predicted by shock heating models,
i.e. S(r) ∝ r1.1 (Tozzi & Norman, 2001). Note also that the entropy amplitude scales as
S ∝ T 0.65 at any cluster radius.

Various non-gravitational processes have been proposed to explain the observed en-
tropy properties, namely the gas heating before or after collapse (from SNs or AGNs) and
the effect of radiative cooling. Voit et al. (2003) predicted that a smoothing of the gas
density due to preheating in the infalling sub-halos would boost the gas entropy gener-
ated by accretion shocks, with a larger efficiency in smaller systems. Kay et al. (2004)
proposed a simple feedback scheme for gas heating, which better reproduce the properties
of gas entropy. However, a self–consistent numerical implementation of a well motivated
feedback model which successfully satisfy a large body of observational constraints is still
missing. Borgani et al. (2005) explored the effects of gas cooling and SNe feedback by
using a set of simulated galaxy clusters. They found that pre–heating the infalling gas is
efficient in amplifying the entropy, but the radiative cooling reduces the effect by a signif-
icant amount. The heating from galactic winds powered by SNe is efficient in providing
an increase of the entropy in the core regions, but even the strongest ones are not able
to produce an appreciable entropy amplification effect. This suggests that is still missing
an efficient mechanism to distribute the SN energy in the diffuse medium. Alternatively,
other source of astronomical heating could be in action, the most obvious candidates
being the AGNs.

In Chapter 5, we propose a geometrical deprojection technique aiming at recovering
gas density and temperature from X–ray and tSZ images. By avoiding the use of X–ray
spectroscopy, this technique would allow in principle to extend entropy studies to larger
radii and at larger redshifts, where the X–ray spectroscopic information may be poor.

The complex physics in cluster core

As mentioned above, there is a very large dispersion in the core properties of the ICM,
within typically 0.1Rvir . This is linked to the complex physics at play in the cluster
centre. In the centre of clusters the gas density is high. The cooling time, which scales
as tcool ∝ T 1/2/ne can be shorter than the age of the cluster. One would expect the
temperature to decrease due to radiative cooling and the density to increase so that the
gas stays in quasi hydrostatic equilibrium. A central temperature decrement is generally
observed in relaxed clusters. At the same time, however, these observations contradict
this simple picture.

The major surprise is probably the lack of very cool gas, which is inconsistent with
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the standard isobaric cooling flow models. The clusters exhibit strong emission from
cool plasma at just below the ambient temperature, T , down to T/2, but not at lower
temperatures, as is predicted by the cooling flow model (Molendi & Pizzolato, 2001;
Böhringer et al., 2002; Peterson et al., 2003; Kaastra et al., 2004). In parallel, high–
resolution images have revealed complex interaction between AGN activity in the cluster
centre and the intra-cluster medium (e.g. Blanton, 2004). One observes X-ray cavities or
’bubbles’, presumably created by the central AGN radio lobes as they displace the X-ray
gas. They are usually surrounded by cool rims while shock fronts are quite rare.

Whether and how both phenomena, the absence of very cool gas and AGN/ICM
interaction, are connected is still unclear (for reviews see Voit, 2005; Bregman, 2004;
Fabian, 2003). For instance, AGN heating may limit cooling but conduction could also
play a role in heating the central region. A better understanding of cooling and AGN
heating in the central part of clusters has further implications because both phenomena
play a role at larger scales in clusters and during galaxy formation.

2.3.2 The Sunyaev–Zeldovich effect

After the first papers by Sunyaev and Zeldovich (Sunyaev & Zeldovich, 1970, 1972), over
a decade of SZ experiments was necessary before the first reliable detection was realized
by Birkinshaw et al. (1984) for three nearby objects (Cl 0016, Abell 665 and Abell 2218).
The telescopes available at that time were enough sensitive to detect the tSZ signal
towards a massive cluster, but many attempts failed due to uncontrolled systematics.
Subsequently, thanks to both improvements in the observing techniques and advances in
detector technology, the SZ signal has been detected in several clusters and measurements
are now routine. We briefly illustrate the present status of SZ observation, for more
detailed reviews see Carlstrom et al. (2002) or Birkinshaw & Lancaster (2005).

The figure 2.7 shows the images of six galaxy clusters, observed with the BIMA array
(see below). Note that the strength of the tSZ signal is similar for all the clusters,
although they span a wide range of redshifts (0.17 ≤ z ≤ 0.89). This represents an
advantage with respect to X–ray observations. Instead, the resolution is much worse, as
one may understand by looking at the synthesized beam, in the lower left corner of each
image.

Single dish telescopes

Due to the high sensitivity of bolometric detectors at millimeter wavelengths, single dish
experiments are ideally suited for the measurement of the SZ spectrum. By observing at
several millimeter frequencies these instruments should be able to separate the thermal
and kinetic SZ from atmospheric fluctuations and sources of astrophysical confusion. The
tSZ has been routinely observed by single dish radio telescopes such as the Owens Valley
Radio Observatory (OVRO) 40- and 5-meter telescopes (e.g. Mason et al., 2001) and the
Nobeyama 45-meter telescope (e.g. Tsuboi et al., 1998).

In the Sunyaev-Zel’dovich Infrared Experiment8 (SuZIE; Benson et al., 2004), pixels
in a six element 140 GHz bolometer array are electronically differenced by reading them
out in a differential bridge circuit (Holzapfel et al., 1997). Differencing in this way makes
the experiment insensitive to temperature and amplifier gain fluctuations that produce 1/f
noise. This increased low frequency stability allows SuZIE to observe in a drift scanning

8http://www.stanford.edu/∼schurch/suzie science.html
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Figure 2.7. BIMA images of six galaxy clustes, with redshifts 0.17 ≤ z ≤ 0.89, from Carlstrom

et al. (2002). In the lower left corner of each image is reported the primary beam.
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mode where the telescope is fixed and the rotation of the earth moves the beams across
the sky. Using this drift scanning technique, the SuZIE experiment has produced high
signal to noise strip maps of the SZ emission in several clusters (Holzapfel et al., 1997).

Single dish observations of the SZ are just beginning to reach their potential and
the future is very promising. The development of large format millimetre wavelength
bolometer arrays will increase the mapping speed of current SZ experiments by orders
of magnitude. Operating from high astronomical sites with stable atmospheres and ex-
ceptionally low precipitable water vapour, future large format bolometer arrays have the
potential to produce high signal to noise SZ images and search for distant SZ clusters
with unprecedented speed.

The first of this new generation of instruments is the BOLOCAM9 151 element bolome-
ter array (Glenn et al., 1998), operating at the Caltech Submillimeter Observatory, a 10.4
m diameter telescope on Mauna Kea in Hawai’i. The telescope works in drift scanning
mode, achieving a high mapping speed at 1′ resolution.

The Arcminute Cosmology Bolometer Array Receiver10 (ACBAR, Runyan et al.,
2003) is a sensitive multi-frequency receiver operating on the 2 m Viper telescope at South
Pole Station. The South Pole, having a pressure elevation of ∼ 11, 000′, is arguably the
best site on the planet for millimeter wave astrophysics. Winter observations with the
ACBAR instrument will be detector noise dominated.

Another telescope located in the South Pole is just starting the operations, the South
Pole Telescope11 (SPT, Ruhl et al., 2004). It consists of a 10 m telescope designed for
conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast
emission.

The Atacama Pathfinder EXperiment12 (APEX, Güsten et al., 2006) is already work-
ing. It is a modified prototype of the 12 m antennas which will constitute ALMA (see
below). The telescope is located in the Atacama Desert of the Chilean Andes, which is
one of the driest places on Earth, minimizing the amount of atmospheric water emission
at microwave frequencies.

Not far from APEX and ALMA, other two telescopes are under construction, the 6
m Atacama Cosmology Telescope13 (ACT, Fowler & ACT Collaboration, 2006) and the
25 m Cornell Caltech Atacama Telescope14 (CCAT, Radford et al., 2007). The ACT
telescope has no moving components in its optical path; to change pointing direction, the
entire telescope moves. It is designed to scan the sky at constant elevation, to minimize
the variations of the atmospheric microwave signal. Given its very large diameter, CCAT
will achieve an excellent resolution in SZ images (0.44′ at 150 GHz) with a large field–
of–view of about 10′ × 10′, with the goal of covering a four times larger area, so as to
cover one entire rich cluster down to a relatively low redshift. In chapters 5 and 6 we will
model our synthetic SZ images on this instrument, which is well suited to the type of SZ
observations required by our method.

The Large Millimeter Telescope15 (LMT, Pérez-Grovas et al., 2006) is a millimeter–
wavelength telescope with a primary aperture of 50-m diameter, located in Volcn Sierra
Negra (Mexico) at an altitude of 4,600 m. The optical design provides a field-of-view

9http://www.astro.caltech.edu/∼lgg/bolocam front.htm
10http://cosmology.berkeley.edu/group/swlh/acbar
11http://spt.uchicago.edu/spt/
12http://www.apex-telescope.org
13http://www.physics.princeton.edu/act
14http://www.submm.org/overview.html
15http://www.lmtgtm.org/intro.html
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of up to 8 arcminutes (diameter) with minimal aberration. The combination of the
large collecting-area and available field–of–view will provide the LMT with extremely
fast mapping-speeds. The first light will be in 2008.

Interferometric Observations

The stability and spatial filtering inherent to interferometry has been exploited to make
high quality images of the SZ. Their stability is due to their ability to perform simulta-
neous differential sky measurements over well defined spatial frequencies. Interferometers
offer an ideal way to achieve high brightness sensitivity for extended low-surface brightness
emission, at least at radio wavelengths.

There are several other features which allow an interferometer to achieve extremely
low systematics. For example, only signals which correlate between array elements will
lead to detected signal. For most interferometers, this means that the bulk of the sky noise
for each element will not lead to signal. Amplifier gain instabilities for an interferometer
will not lead to large offsets or false detections, although if severe they may lead to
somewhat noisy signal amplitude. The spatial filtering of an interferometer also allows
the emission from radio point sources (see below) to be separated from the SZ emission.
This is possible because at high angular resolution (∼< 10′′) the SZ contributes very little
flux. This allows one to use long baselines, which give high angular resolution, to detect
and monitor the flux of radio point sources while using short baselines to measure the SZ.
Nearly simultaneous monitoring of the point sources is important as they are often time
variable. The signal from the point sources is then easily removed, to the limit of the
dynamic range of the instrument, from the short baseline data which are sensitive also to
the SZ.

The first interferometric detection of the SZ was obtained with the Ryle Telescope16

(RT, Jones et al., 1993). The RT was built from the 5 Kilometer Array, consisting of
eight 13 m telescopes located in Cambridge, England operating at 15 GHz with East-
West configurations. Five of the telescopes can be used in a compact E-W configuration
for imaging of the SZ.

The Owens Valley Radio Observatory17 (OVRO) consisted of six 10.4 m antennas
configured on a 500-m T-shaped track, located in the Owens Valley. The Berkeley–
Illinois–Maryland Association array18 (BIMA) consisted of ten 6.1 m antennas configured
with baselines as large as two kilometres, and as small as eight meters, located at Hat
Creek, California. These two observatories provided images of several tens of galaxy
clusters (e.g Carlstrom et al., 1996; Patel et al., 2000; Joy et al., 2001; Reese et al., 2002;
LaRoque et al., 2006; Bonamente et al., 2007)

The Ryle Telescope, OVRO, and BIMA SZ observations are insensitive to the angular
scales required to image low redshift clusters, at z < 0.1. The Cosmic Background
Imager (CBI) (Padin et al., 2001) has been used to image the SZ in a few nearby clusters
(Udomprasert et al., 2004). The CBI is composed of thirteen 0.9 m telescopes mounted
on a common platform with baselines spanning 1 m to 6 m.

Interferometric observations of the SZ, as for single dish observations, are just be-
ginning to demonstrate their potential. Upcoming instruments will be over an order
of magnitude more sensitive. The OVRO/BIMA SZ imaging team built the Sunyaev-

16http://www.mrao.cam.ac.uk/telescopes/ryle
17http://www.ovro.caltech.edu
18http://bima.astro.umd.edu
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Zel’dovich Array (SZA)19, consisting of eight 3.5 m telescopes. which has just produced
images of clusters out to z = 1.03 (Muchovej et al., 2007). The array will be combined
with the existing OVRO and BIMA arrays to form one large array called Combined Ar-
ray for Research in Millimeter-wave Astronomy20 (CARMA), located in Cedar Flat in
the Inyo Mountains of California, which will operate from 2008.

The RT SZ team also built the Arcminute Microkelvin Imager21 (AMI, Kaneko, 2006),
which has recently begun observations. It consists of ten 3.7m telescopes operating at 15
GHz near the RT in Cambridge. It is not planned to operate AMI as a heterogeneous
array with the Ryle telescope, but the RT would be used for concurrent point source
monitoring.

Additionally, plans have been discussed to reconfigure the CBI to 90 GHz (now it
observes at 30 GHz). It would be particularly well suited to perform SZ surveys. A
similar fixed platform interferometer, the Array for Microwave Background Anisotropy22

(AMiBA), is also being built with nineteen 1.2 m telescopes and operating at 90 GHz.
AMiBA, like the reconfigured CBI, would also be ideally suited for performing SZ surveys
at moderate resolution.

The Atacama Large Millimeter/submillimeter Array23 array (ALMA) will be com-
posed of up to 50 × 12m antennas, located at Atacama. Array will have reconfigurable
baselines ranging from 150 m to 18 km. SZ images will achieve a resolutions as fine as
0.042′′ at 100 GHz.

The Planck satellite.

The main objective of the Planck mission24 is to measure the fluctuations of the CMB with
an accuracy set by fundamental astrophysical limits. To do this, Planck will image the
whole sky with an unprecedented combination of sensitivity (∆T/T ∼ 2 · 10−6), angular
resolution (to 5′), and frequency coverage (30 − 857 GHz). This level of performance
will enable Planck to measure the angular power spectrum of the CMB fluctuations to
high accuracy. It is equipped with the Low Frequency Instrument (LFI, an array of
receivers based on HEMT amplifiers) covering the frequency range 30− 100 GHz and the
High Frequency Instrument (HFI, an array of receivers based on bolometers) covering the
frequency range 100 − 857 GHz. The characteristic spectral signature of the tSZ effect
will allow to identify the tSZ signal from clusters and to distinguish them from other
unresolved sources. Planck will produce a large all–sky sample of clusters with easily
computable selection criteria, which is expected to include about 30,000 objects. The
satellite will be launched in 2008 aboard an Ariane 5 rocket together with the Herschel
Space Observatory satellite.

Contaminations

When considering SZ observations, one has to carefully take into account several source
of contamination and confusion, which could substantially affect the signal. They are
briefly summarized below:

19http://astro.uchicago.edu/sza
20http://www.mmarray.org
21http://www.mrao.cam.ac.uk/telescopes/ami
22http://amiba.asiaa.sinica.edu.tw
23http://www.alma.nrao.edu
24http://www.rssd.esa.int/PLANCK
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Figure 2.8. Illustration of the characteristic angular scales of primary CMB anisotropy and of

the SZ (Carlstrom et al., 2002). The images each cover one square degree and the grey scales are

in µK. The left panel shows a image of the SZ from many clusters at 150 GHz (2 mm) obtained

from a hydrodynamic simulation. The clusters appear point-like at this angular scale. The centre

panel is a realization of CMB anisotropy for a ΛCDM cosmology. The right panel illustrates that

the SZ can be distinguished readily from primary CMB anisotropy provided the observations have

sufficient angular resolution.

• CMB anisotropy. One such source is anisotropy of the CMB itself (see figure 2.8).
For distant clusters with angular extents of a few arcminutes or less it is not a serious
problem as the CMB anisotropy is expected (Hu & White, 1997) and indeed found
to be damped considerably on these scales (Church et al., 1997; Subrahmanyan et
al., 2000; Dawson et al., 2001, see also Holzapfel et al., 1997 and LaRoque et al.,
2003 for CMB limits to SZ contamination). For nearby clusters, or for searches
for distant clusters using beams larger than a few arcminutes, the intrinsic CMB
anisotropy must be considered. The unique spectral behaviour of the thermal SZ
can be used to separate it from the intrinsic CMB in these cases. Note, however,
that for such cases it will not be possible to separate the kinetic SZ effects from the
intrinsic CMB anisotropy without relying on the very small spectral distortions of
the kinetic SZ due to relativistic effects.

• Radio point sources. Historically, the major source of contamination in the
measurement of the SZ has been radio point sources. It is obvious that emission
from point sources located along the line of sight to the cluster could fill in the SZ
decrement, leading to an underestimate of the signal from the cluster. The radio
point sources are variable and therefore must be monitored. Radio emission from
the cluster member galaxies, from the central cD galaxy in particular, is often the
largest source of radio point source contamination, at least at high radio frequencies
(Cooray et al., 1998; LaRoque et al., 2003). The typical spectral index of the radio
point sources is α ∼ 0.7 for Sν ∝ ν−α, where Sν is the point source flux. In the RJ
limit, the SZ flux is proportional to ν2 and therefore point sources are much less of
an issue at higher radio frequencies.

Although it is most likely that insufficient attention to radio point sources would
lead to the underestimate of the SZ effect, it could also lead to an overestimate.
The most obvious example is if unaccounted point sources are in the reference fields
surrounding the cluster. An effect due to gravitational lensing has also been pointed
out for low frequency observations where the flux from many point sources must be
taken into account before a reliable measure of the SZ can be made. Essentially,
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gravitational lensing increases the efficiency of detecting point sources toward the
centre of the cluster which could lead to an overestimate of the SZ decrement (Loeb
& Refregier, 1997). This effect should be negligible at frequencies greater than
roughly 30 GHz.

• Dust. At frequencies near the null of the thermal SZ and higher, dust emission
from extragalactic sources as well as dust emission from our own galaxy must be
considered. Dust emission from our Galaxy rises steeply as ν2+β with the observed
dust opacity index β found to be 0 < β < 2 over the frequencies of interest.

At the angular scales and frequencies of interest for most SZ observations, contami-
nation from diffuse Galactic dust emission will not usually be significant and is easily
compensated. Consider instead the dusty extragalactic sources such as those that
have been found toward massive galaxy clusters with the SCUBA bolometer array
(Smail et al., 1997). Spectral indices for these sources are estimated to be ∼ 1.5−2.5
(Blain, 1998; Fischer & Lange, 1993). Sources with 350 GHz (850 µm) fluxes greater
than 8 mJy are common and all clusters surveyed had multiple sources with fluxes
greater than 5 mJy. A 10 mJy source at 350 GHz corresponds to ∆TCMB = 345 µK
for 1′ beam, or a Compton y-parameter of 6 · 10−5. The same source scaled to
270 GHz, assuming a ν2 spectrum, corresponds to ∆TCMB = 140 µK at 270 GHz
for 1′ beam and a y-parameter of 6·10−5. Scaling to the SZ thermal null at 218 GHz
gives 3.9 mJy which corresponds to a ∆TCMB = 85 µK for a 1′ beam. This in turn
translates directly to an uncertainty in a measurement of the cluster peculiar veloc-
ity (eq. 2.11); for a massive cluster with an optical depth of 0.01 and an electron
temperature of 10 keV, 85 µK corresponds to a peculiar velocity of 930 km/s. The
contamination is more severe for less massive clusters with the dependence scaling

as ∆vpec ∝ τ−1
e ∝ R2/M ∝ M−1/3 ∝ T

−1/2
e . The contamination scales inversely

with the beam area.

As with SZ observations at radio frequencies, the analyses of high frequency observations
also need to consider the effects of point sources and require either high dynamic angular
range, large spectral coverage, or both, to separate the point source emission from the
SZ.

2.4 Cosmology with galaxy clusters

Galaxy cluster can be used as powerful cosmological probes, by applying several different
methods. In this section, we review important cosmological tests to which present and
future SZ experiments will provide very important contributions.

The angular diameter distance

The combination of SZ and X–ray data provides a method to measure the angular di-
ameter distance of galaxy clusters, taking advantage of the different dependence on gas
density. This method is independent of any other distance ladder and provides distances
to high–redshift galaxy clusters (out to z ≃ 1). The distance–redshift relation DA(z)
directly probes the geometry of the Universe and then provides a measure of the cosmo-
logical parameters (see Section A.5). Data currently available only allow one to measure
the normalization, that is the Hubble constant H0. In principle, having data extended
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Figure 2.9. Angular diameter distances for a set of 38 clusters (circles). The dashed line is

the best–fit angular diameter curve using the best-fit Hubble constant H0 = 76.9km/s/Mpc and

ΩM = 0.3, ΩΛ = 0.7. The squares are from another low–redshift sample (Mason et al., 2001), and

they are not included in the fit (plot from Bonamente et al., 2006).

to larger redshifts would allow one to determine also the matter density parameter or to
discriminate between different cosmological models. Bonamente et al. (2006) determined
the distance for a large sample of 38 clusters (figure 2.9), thus obtaining an estimate of the
Hubble constant of H0 = 76.9+3.9

−3.4
+10.0
−8.0 km/s/Mpc for an ΩM = 0.3, ΩΛ = 0.7 cosmology

(68% confidence interval, statistical followed by systematic uncertainty). This measure
is in good agreement with the CMB power spectrum estimate of H0 = 73.2+3.1

−3.2 (WMAP
3–year data, Spergel et al., 2007), from supernovae Ia H0 = 73± 4± 5 km/s/Mpc (statis-
tical and systematic errors, Riess et al., 2005) and the measure performed using Cefeids
in the local Universe by the HST key project25 of H0 = 72 ± 8 km/s/Mpc (Freedman
et al., 2001).

In the method based on tSZ/X–ray observations, the main sources of systematics are
the ellipticity of the clusters and the small–scale clumping of the ICM. The first is less
serious because simply generate a scatter in the reconstructed distance, while the second
is responsible for a boosting of the X–ray signal and thus could generate a systematic
bias. This method is discussed in detail in Chapter 4. Using hydrodynamical simulations
of galaxy clusters, we discuss its accuracy in the estimate of the Hubble constant and ΩM

and we asses the effect of these systematics on our results.

The baryon fraction

The baryon fraction in galaxy clusters is generally considered as very close to the universal
one, since it is believed that mass segregation do not occour at the typical scales of the
formation of galaxy clusters. The baryon fraction is given by fb = Ωb/ΩM , where Ωb

and ΩM are the mean baryon density and the total matter density of the Universe. fb

is the sum of the gas and galaxy mass fractions: fb = fgas + fgal. Combined with the

25The HST key project determined the Hubble constant by the systematic observations of Cepheid
variable stars using the Hubble Space Telescope.
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Figure 2.10. The X-ray gas mass fraction (with rms 1σa errors) as a function of redshift for the

best–fitting cosmology (Allen et al., 2004). The green curve shows the best–fitting constant value.

Ωb value estimated from Big Bang nucleosynthesis or CMB measurements, fb in clusters
can be used to measure ΩM (White et al., 1993). The method requires an independent
knowledge of the Hubble constant h, which enters in the determination of Ωb (Ωb ∝ h−2),
of fgas (fgas ∝ h−3/2) and of fgal (fgal ∝ h−1). Cluster sample studies that rely on
measurements of both fgas and fgal are rare. ΩM is most often constrained from fgas

only (which represents the dominant contribution, being one order of magnitude larger
than the one given by the galaxies), assuming a constant fgal/fgas ratio, taken from other
cluster studies (e.g. Ettori et al., 2003; Allen et al., 2004). A further difficulty is that fgas

increases with the integration radius and numerical simulations indicate that fgas within
the virial radius is slightly smaller than the Universe’s value (Eke et al., 1996). This turns
out in a correction of about 20% for fb values estimated within 1/3 of the virial radius
(Allen et al., 2004). One also observes a significant increase of fb with system mass,
mainly resulting from the increase of fgas (Mohr et al., 1999; Lin et al., 2003). This is
likely due to non–gravitational processes, less important in high mass systems. Therefore,
most studies are restricted to massive clusters to minimize systematic errors. However, to
firmly establish which cluster populations are fair samples of the Universe, the variation
of fgas with system mass must be fully understood, which remains to be done.

The available fb data provide a tight constraint on ΩM . All recent studies favor a low
ΩM Universe and are in excellent agreement, e.g. ΩM = 0.37±0.08 from BeppoSAX data
(Ettori et al., 2003), ΩM = 0.28 ± 0.03 from ROSAT/ASCA data (Lin et al., 2003) and
ΩM = 0.30 ± 0.04 from Chandra data (Allen et al., 2004).

Assuming that the value of fgas does not change with redshift and thus constant it
can be used as a distance indicator (Sasaki, 1996). It is pure geometrical test, which
provides constraints on dark energy content ΩΛ and equation of state w. However, the
method is not free from possible systematics. In fact, fgas varies with radius and cluster
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mass in the local Universe. So, one would need to measure fgas in clusters having the
same mass (preferentially high) and over the same fraction of the virial radius, at different
redshifts. Figure 2.10 shows the results of Allen et al. (2004), who recently applied this
method to a set of Chandra observations (see also Abroe et al., 2002; Ettori et al., 2003;
LaRoque et al., 2006). For a ΛCDM cosmology, they obtained: ΩM = 0.245 ± 0.04 and
ΩΛ = 0.96± 0.2 (68% confidence level), with Ωbh

2 = 0.0214± 0.02 and h = 0.72± 0.08 as
only priors. The future generation of X–ray and SZ telescopes is promising in providing
images with high sensitivity, which would allow to extend this method to a larger set of
galaxy clusters, at higher redshift. Such measurement will enable more accurate estimates
of ΩM and ΩΛ and in principle also of the dark energy equation of state w (see Section
A.5), see Rapetti & Allen (2007).

An accurate estimate of the baryon fraction requires both a measurement of the gas
mass and of the total mass of the cluster. The gas density profile (and then the gas mass)
can be easily measured with good accuracy with X–ray data, since it does not require deep
observations. The main source of systematics is probably the presence of small unresolved
gas clumps, which boost the X–ray signal (recall that SX ∝ ρ2), causing an overestimate
of the gas mass by a few percent, as we show in Chapter 5. Instead, a much larger
uncertainty is related to the measure of the total mass, which can be underestimated by
10−20% due to violation of the condition of hydrostatic equilibrium (see discussion below
and our analysis in Chapter 6). Unfortunately, the two masses are affected by systematic
biases going in opposite directions, both causing an overestimate of fb in the cluster and
thus an underestimate of ΩM .

Evolution of the cluster mass function

Measurements of the clusters masses and number density as a function of redshift represent
sensitive probes of cosmology and can be used to constrain the matter density, ΩM , the
normalization of the perturbation power spectrum σ8 and, for sufficiently large samples,
the equation of state of the dark energy w. Figure 2.11 shows the growth of cosmic
structures in two hydrodynamical cosmological simulations, which have been carried out
with a different choice of ΩM . The two simulations produce the similar pattern at the
present time, but their past histories are very different. The most relevant feature is
the fast decay in the abundance of hot, massive clusters as a function of redshift in the
ΩM = 1 model, in contrast to the mild changes visible in the low-density model. This
remarkable evolutionary difference represents one of the major motivations for conducting
very deep cluster surveys.

In Section A.6.4 we discuss the mass function, showing also its evolution with redshift,
both computed from analytical models and directly measured from simulations. Figure
2.12 shows instead how the redshift evolution of the mass function varies when changing
the cosmological parameters, in order to understand how strong is its dependence on
them (and then its potential in constraining them). As expected, it has a very strong
dependence on ΩM and only a mild dependence on ΩΛ. In particular, the evolution
is the case ΩM = 1 is very rapid. The distance between the curves rapidly increases
with redshift, indicating that the deeper the cluster detections, the better will be the
constraints on the cosmological parameters.

X–ray surveys have already been used to constrain σ8 and ΩM (e.g. Eke et al., 1996;
Borgani et al., 2001; Schuecker et al., 2002; Böhringer et al., 2004; Haiman et al., 2005;
Henry et al., 2006; Böhringer et al., 2007; Finoguenov et al., 2007; Burenin et al., 2007).
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Figure 2.11. The evolution of the cluster population from N–body simulations in two different

cosmologies (Borgani & Guzzo, 2001). Upper panels describe a flat, low–density model with

ΩM = 0.3 and ΩΛ = 0.7 (L03); lower panels are for an Einstein–de–Sitter model (EdS) with

ΩM = 1. Superimposed on the dark matter distribution, the yellow circles mark the positions

of galaxy clusters with virial temperature T > 3 keV, the size of the circles is proportional to

temperature. Model parameters have been chosen to yield a comparable space density of clusters

at the present time. Each snapshot is 250h−1 Mpc across and 75h−1 Mpc thick (comoving with

the cosmic expansion).

Their results are generally consistent with ΩM = 0.3 and indicate for σ8 the interval
σ8 = 0.7 − 0.8. This value was discrepant with the first determination from the CMB
power spectrum (σ8 ∼ 0.9) obtained by Spergel et al. (2003), however the more recent
results from the analysis of 3 years of WMAP data gives σ8 = 0.76 ± 0.05 (Spergel
et al., 2007). The main limitation of X–ray surveys is probably the reduced sensitivity
to high redshift clusters. SZ surveys offer the attractive feature of probing the cluster
abundance at high redshift as easily as in the local universe; as discussed in section 2.2, the
sensitivity of a SZ survey is essentially a mass limit (Bartlett & Silk, 1994; Barbosa et al.,
1996; Holder et al., 2000; Bartlett, 2000; Kneissl et al., 2001). The left panel of figure
2.13 shows the expected mass limit for a X–ray and a SZ cluster survey. The SZ effect
begins to increase in flux density beyond z ∼ 0.6, because of the redshift–independence
of its surface brightness and the behaviour of DA(z), while it is already difficult to detect
high–mass clusters in the X–rays beyond z = 1. In addition to that, an SZ survey has
the remarkable quality to have a mass threshold almost independent of redshift.

The right panel of figure 2.13 represents the redshift distribution of cluster counts
expected by the 400 deg2 survey of the South Pole Telescope (Ruhl et al., 2004). The
resulting source counts redshift distribution provides a powerful measure of the cosmolog-
ical parameters. In particular, the data at higher redshift are fundamental to distinguish
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Figure 2.12. Evolution of the cumulative mass function for different choices of cosmological

parameters (Rosati et al., 2002).

between different cosmological models.

When performing a survey (X–ray or SZ), one generally cannot directly measure the
mass content of the cluster. Instead, the mass is inferred through a well–calibrated corre-
lation (scaling relation) with a global cluster property (X–ray luminosity or temperature,
SZ total flux), which may be easily measured. Understanding the scatter and the evo-
lution with redshift (if any) of these relations is of key importance to fully exploit the
potential of future experiments. The most difficult part of the job is definitely to have an
accurate estimate of the cluster total mass, for which many sources of errors and biases,
both intrinsic and instrumental have been identified. The mass is usually estimated by
applying the hydrostatic equilibrium equation. However deviations from this equilibrium,
which are commonly found in simulations, are probably responsible for an underestimate
of the mass by about 10−20% (Rasia et al., 2004; Nagai et al., 2007; Jeltema et al., 2007)
Another key ingredient is the temperature profile: X–ray spectroscopic analysis is often
limited to the inner regions of the cluster and/or to low redshift objects, while in many
cases the cluster is simply assumed to be isothermal. An additional source of systematics
is the eventual adoption of an analytical cluster model for gas density and temperature
and/or total mass. Both these problems are discussed by Rasia et al. (2006a), by applying
different methods of mass reconstruction to a set of synthetic X–ray maps of simulated
clusters. In this perspective, we present in Chapter 5 and 6a geometrical deprojection
technique which allows one to recover three–dimensional profiles of gas density and tem-
perature and of total mass, by combining X–ray images and SZ observations (with no use
of X–ray spectroscopic data).
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Figure 2.13. Left panel: limiting cluster virial masses (M180) for detection in the X–ray survey

(upper pair of curves) and in the SZ survey (lower pair of curves), from Haiman et al. (2001). The

solid curves show the mass limit in a flat ΛCDM model, with w = −1,ΩM = 0.3 and h = 0.65,

and the dotted curves show the masses in the same model except with w = −0.5. Right panel:

expected number of SZ detected galaxy clusters as a function of redshift. The data points are for

a 4000 deg2 SPT survey with idealized sensitivity. The data points and the line passing through

them were generated assuming a ΩM = 0.3, ΩM = 0.7, σ8 = 1 cosmology. The other two lines

show the effect in the expected cluster counts due to slight changes in the cosmology.

2.5 Conclusions

In this Chapter, we have presented an overview of X–ray and tSZ properties of galaxy
clusters, which are complementary under many aspects. The first provides a complete and
detailed description of gas properties; in fact, the gas density is given by the flux, while
the spectroscopic analysis of the spectrum gives the gas temperature and the metallicity.
However, the X–ray signal rapidly decreases with the gas density and the cluster redshift,
thus making the spectroscopic analysis really challenging. On the other hand, the tSZ
signal smoothly decreases in the outskirts and has no dependence on redshift. It is
then ideally suited for distant cluster detection. However, the information it provides is
somewhat limited, since it depends on the product of gas density and temperature and
does not allow a measure of the cluster redshift. In addition, it is potentially more affected
by a number of contaminations.

Given their particular position, at the top of the hierarchy of cosmic structures, galaxy
clusters are natural probes for cosmology. In this Chapter we have also shortly reviewed
important cosmological tests based on observations of galaxy clusters. An aspect of par-
ticular relevance is the measure of the total mass of galaxy clusters, which is affected by
systematic biases (both intrinsic and instrumental), despite its important role in cosmo-
logical studies. However, in order to fully exploit their potentiality, these tests require an
accurate calibration together with a careful study of possible systematics. In this context,
hydrodynamical simulations have provided and will provide an important contribution. In
fact, although some physical processes (in particular those related to feedback processes)
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still require a more accurate numerical description, present numerical simulations have
achieved an high level of accuracy in describing ICM physics and then provide a reliable
representation of galaxy clusters. For this reason, simulated clusters are ideal test–beds
for cosmological studies, since they could provide interesting insights on the presence of
possible systematics related to the thermodynamical structure of the clusters. The most
important example is probably represented by the underestimate of the total mass due
to the deviations from hydrostatic equilibrium (e.g. Rasia et al., 2004; Kay et al., 2004).
Following a different perspective, the creation of synthetic observations of galaxy clusters
(namely in X–ray, tSZ or temperature) could allow to study systematics and limitations
related to instrumental effects (e.g. Rasia et al., 2006a).

In the following Chapters of this Thesis we will analyze the combination of X–ray and
tSZ observations in different applications, by using a set of hydrodynamical simulations.
In Chapter 4 we will study the capabilities in the measurement of the angular diameter
distance and, then, the cosmological parameters. In Chapter 5, we will present a tech-
nique for performing a geometrical deprojection of X–ray and tSZ images, which avoids
the use of X–ray spectroscopy. This technique will allow to extend the analysis of the
thermodynamic structure of the ICM to larger radii and at higher redshift than possible
with X–ray only measurements. Finally, in Chapter 6 we will develop this technique by
implementing the solution of the hydrostatic equilibrium equation, thus allowing us to
measure also the total gravitating mass of the cluster. We will study the systematics of
this procedure and how its uncertainty affects the calibration of mass scaling relation with
X–ray and tSZ properties.



Chapter 3

Hydrodynamical simulations of
galaxy clusters

N–body simulations were used for the first time in the sixties for the study of cosmic
structure formation, but they become a fundamental part of the study of cosmology only
in the eighties, thanks to the development of fast computers and efficient computing
algorithms. Now, a large part of our knowledge on the formation and evolution of cosmic
structures is based on the results from numerical simulations. Hydrodynamic codes are
able to represents all the different matter components of cosmic structures (dark matter,
gas, stars) and to follow their evolution in detail. The physics of gas and star formation
is described in detail with recipes for cooling, heating and star formation and also a
treatment of the metal production is implemented.

In this chapter, the main characteristics of numerical simulations are discussed, with
particular attention to the N–body TREESPH technique, which is adopted in the GAD-
GET21 code (Springel et al., 2001; Springel, 2005a), with which the set of simulated
galaxy clusters analyzed in this work has been realized. Section 3.1 and 3.2 provide an
introduction to the N–body TREE and SPH techniques respectively. Section 3.3 describes
our set of simulated clusters and the procedure used to generate synthetic maps of the X–
ray surface brightness, of the Sunyaev–Zeldovich effect and of the temperature. Finally,
Section 3.4 describe the different definitions of mean temperature that we will use in the
following.

3.1 The gravitational dynamics: the N–body TREE code

N–body simulations describe a portion of the Universe through a number (N) of particles,
whose dynamics is determined only by gravitational interaction (for reviews, see e.g.
Bagla, 2005). The simulations are heavily limited by the total number of particles, since
the computational cost increases rapidly with it. Each simulation essentially represents a
compromise between its mass resolution and its dimension, given the available computing
resources.

One essentially needs to compute, for each particle, the resulting force due to the
gravitation attraction of all the other particles. We first consider the simplest case of two

1http://www.mpa-garching.mpg.de/gadget

31
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Figure 3.1. Schematic illustration of the TREE code scheme in two dimensions (Springel et al.,

2001). The particles on the left are enclosed in a first level cell (main node) that is iteratively

split into 4 squares (8 cubes for the three–dimensional case) until one particle remains (the “leaf”

of the tree).

particles i and j. The two particles attract each other with force:

~Fij =
Gmimj(~xj − ~xi)

(ǫ2 + |~xi − ~xj |2)3/2
(3.1)

where G is the gravitational constant, mi and mj are the masses of the particles ~xi and
~xj are the coordinates of the particles and ǫ is the softening parameter. Since nothing
prevents two particles to be very close, the gravitational force could in principle diverge,
thus requiring in principle an infinite accuracy in the integration of the orbits. To prevent
this, the ǫ term is added to the denominator. This term essentially represents the spatial
resolution of the particle dynamics.

At each timestep it is necessary to compute the global gravitational force acting on
each particle, due to the distribution of all the other particles. The simplest way to do so
is to compute ~Fij for all pairs of particles. This method was adoped by early simulations.
It provides a very accurate estimate of the gravitational force, but its computational cost
rapidly increases with the number of particles, since the number of operations required at
each timestep is N(N − 1)/2. In order to treat more complex systems, it is necessary to
reduce the number of operations, at the cost of reducing the force resolution. The solution
adopted by a large part of N–body codes is to compute the large–scale gravitational field
over a grid. In this case, the computational cost is sensitively reduced, but the resolution
is limited by the grid spacing. To solve this problem, modern versions of these codes
supplement the force computation on scales below the mesh size with a direct summation
and/or they place mesh refinements on highly clustered regions.

The TREE algorithm follows a completely different approach; the idea is to treat
distant particles as one single particle by adopting a hierarchical partitioning system,
which has been developed by Barnes & Hut (1986). The structure may be tought as
an ideal tree. The smallest elements are cells containing one single particle, which can
be tought as the leaves of the tree. These particle–bearing cells are grouped into larger
cells, the nodes, which are in turn grouped into larger nodes down to the root, i.e. the
whole simulation box. Each small and large cell will be characterized by a the total mass
and center–of–mass of the particle(s) it contains. The construction of the tree follows a
partitioning procedure, which is sketched in figure 3.1 for the case of a two–dimension
simulation. The process starts by considering the largest cell, which contains the whole
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simulation box. It is divided into 23 subcells, each having side equal to one half of the
side of the parent cell. If a cell contains two or more particles, it is in turn divided
into subcells and the division process continues until each cell contains no more than one
particle. When the partitioning process is finished, the space is divided into a number
of cells of different size, which either contain exactly one particle or are progenitors to
further cells, in which case each cell carries the monopole and quadrupole moments of all
the particles that lie inside its volume.

The force computation proceeds by an iterative process, which walks up the tree, sum-
ming the appropriate contribution from each node, which is determined by the accuracy
parameter θ (typically θ ∼ 1◦) in the following way. Let l be the length of a cell and D the
distance from the cell’s centre–of–mass and the particle. Then if l/D < θ the contribution
of the cell content to the total force acting on the particle P is computed by treating it a
single particle, otherwise its subcells are considered. This process is repeated iteratively
until the resolution criterion is satisfied or a one–particle cell is reached.

3.2 The gas physics: Smoothed Particle Hydrodynamics

(SPH)

The gas component is described by solving the equations of fluid dynamics. This can
be done by following either a Lagrangian or an Eulerian approach. In the first case, the
thermodynamic quantities (density, temperature, pressure, entropy) are carried by the
single particles, which interact with each other. In the second more classical approach,
the system is described by a grid (which may be adaptive) over which the equations are
solved.

The Smoothed Particle Hydrodynamics (SPH) has been introduced by Lucy (1977)
and Gingold & Monaghan (1977) to solve the fluid equation in the context of astrophysical
numerical simulations (for recent reviews, see Springel et al., 2005; Monaghan, 2005). It is
a Lagrangian technique in which fluid elements constituting the system are represented by
particles. SPH avoids the main limitation due to the use of a grid on the dynamic range
in spatial resolution or on the global geometry. Its main limitations are the treatment
of the shocks, which is done by introducing an artificial viscosity, and the fact that it
is not possible to represent an arbitrarily large density gradient with a finite number of
particles.

The SPH is particularly well suited to be used in association with a TREE N–body
code, since their underlying principles are similar. Both techniques are fully Lagrangian
and neither use a grid. The resulting code naturally allows to follow the evolution of a
large number of particles within a Lagrangian framework (Hernquist & Katz, 1989).

In the SPH, the fluid is modelled as composed by a number of elements which are
represented by particles. Thus, if the system is evolved according to the laws of hydrody-
namics, ρ can be estimated form the local density of particles. Since the computational
model consists of a finite number of fluid elements, local averages must be performed over
volumes of nonzero extent. This is conveniently accomplished by introducing a system-
atic procedure for smoothing out local statistical fluctuations in the particle number. The
mean value of a physical field, f(~r), within a given interval can be determined through
kernel estimation according to

〈f(~r)〉 =

∫

W (~r − ~r′;h)f(~r′)d~r′ (3.2)
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where W (~r) is known as the smoothing kernel, h is the smoothing length, which specifies
the extent of the averaging volume, and the integration is over all space. The smoothing
kernel is normalized to 1. It is also required that 〈f(~r)〉 → f(~r) for h → 0. Within
reasonable assumptions on the kernel function W (~r), Hernquist & Katz (1989) show that
the error made in approximating f(~r) by its smoothed estimate 〈f(~r)〉 is O(h2).

If the values of f(~r) are known only at a finite number of discrete points, distributed
with number density n(~r) =

∑N
j=1 δ(~r −~r′), then the smoothed equivalent can be written

as (Hernquist & Katz, 1989):

〈f(~r)〉 =
N
∑

j=1

f(~rj)

〈n(~r)〉W (~r − ~rj;h). (3.3)

In particular, if a mass mj is associated with each fluid element then

〈ρ(~r)〉 =

N
∑

j=1

mjW (~r − ~rj;h). (3.4)

In every timestep the SPH code must solve the fluid equations: the mass conservation
is assured by the fact that the kernel function is normalized to 1 (

∫

W (~r)d3r = 1), while
in the adiabatic regime the Euler and the energy conservation equations become:

(

d~v

dt

)

n

= −
N
∑

j=1

mj

[

p

ρ2
+

pj

ρ2
j

]

~∇W (|~r − ~rj|, h) (3.5)

and
(

dǫ

dt

)

n

=
p

ρ2

N
∑

j=1

mj(|~v − ~vj|) · ~∇W (|~r − ~rj |, h) (3.6)

respectively.
The description of a non–conservative physical system can be implemented by mod-

ifying eq. 3.6, for example a radiative gas is obtained by adding a cooling term. On
the contrary the description of phenomena like shock–heating requires the addition of
artificial viscosity terms in eq. 3.5.

An important advantage of the SPH formalism is that it provides a natural means
for estimating gradients of the local fluid properties. Gradients of the physical variables
are replaced by derivatives of the smoothing kernel, thereby constraining W (~r) to be
differentiable or at least the same order as that of the terms present in the dynamical
equations. In addition, the kernel should be sharply peaked and approach a delta function
as h → 0, in order that the smoothing estimates retain a local character. A kernel with
compact support is generally preferred for reasons of computational cost, so as to perform
the integration over a finite portion of volume.

In our simulations, we adopt the following kernel:

W (x) =
8

πh3







1 − 6x2 + 6x3 0 ≤ x ≤ 1
2

2(1 − x)3 1
2 ≤ x ≤ 1

0 x ≥ 1
(3.7)

where x = r/h and r is the distance from the particle position. Note that both the first
and the second derivatives of the above kernel are continuous.
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The local spatial resolution is determined by the smoothing length h. A more tradi-
tional approach adopts the same h for all particles. However, a constant h would yield
relatively more accurate estimates in regions with a high density of particles than in lower
density regions. Furthermore, all the structures smaller than h would not be resolved,
thus not taking full advantage of the adaptive Lagrangian nature of the SPH method.
An adaptive h instead allows at the same time to achieve the necessary resolution in
denser regions and to maintain the same level of accuracy at all points on the fluid, thus
improving consistency and efficiency of the code. The value of h is then determined from
the local particle density, by keeping the number of neighborhoods2 either exactly, or at
least roughly, constant.

3.3 The set of simulated clusters

The sample of simulated galaxy clusters used in this Thesis has been extracted from
two sets of cosmological hydrodynamical simulations, both realized with the treeSPH
GADGET-2 code. These simulations adopted a “concordance” ΛCDM model with Ωm =
0.3 for the matter density parameter at present time, ΩΛ = 0.7 for the cosmological
constant term, Ωb = 0.019h−2 for the baryon density parameter, h = 0.7 for the Hubble
constant in units of 100 km s−1Mpc−1. The first simulation has σ8 = 0.8, while the
second has a larger value σ8 = 0.9. Besides gravity and hydrodynamics, the simulations
include the treatment of radiative cooling, the effect of a uniform time–dependent UV
background, a sub–resolution model for star formation from a multiphase interstellar
medium, as well as galactic winds powered by SN explosions (see below).

The larger part of the galaxy clusters analyzed in this Thesis comes from the first
simulation. The run follows the evolution of 4803 dark matter particles and an equal
number of gas particles in a large cosmological box of size 192h−1 Mpc. The mass of the
gas particles is mgas = 6.9 · 108 h−1M⊙, while the Plummer-equivalent force softening is
7.5h−1 kpc at z = 0. We refer to Borgani et al. (2004) for a detailed presentation of this
simulation. Figure 3.2 shows a map of the gas density over the whole box of the simulation
at z = 0, through a slice having thickness of 12h−1Mpc. In the image, the bright spots
clearly identify the galaxy clusters. This region contains the more massive one of the
simulation, which has a virial mass Mvir = 1.3 · 1015 h−1M⊙ (see Section A.6.3), located
in the upper right corner of the map. It also shows the large–scale matter distribution.
The clusters are separated by regions characterized by a very low density (voids) and
connected by filamentary structures.

In order to extend our analysis to more massive and hotter systems, which are mostly
relevant for current SZ observations, we include four more galaxy clusters having Mvir >
1015 h−1M⊙ and belonging to a different set of hydrodynamical simulations (Borgani
et al., 2006), which are shown in Figure 3.3. These clusters have been extracted from a
dark-matter only simulation with a box-size of 479 h−1Mpc (Yoshida et al., 2001) and
resimulated at higher mass and force resolution. The new initial conditions for this system
have been generated by applying the Zoomed Initial Condition (ZIC) technique (Tormen
et al., 1997). This method allows one to increase the mass resolution in a suitably chosen
high–resolution Lagrangian region surrounding the structure to be resimulated, and at the
same time to correctly describe the large–scale tidal field of the cosmological environment

2The number of neighborhood is defined as the number of particles lying inside the smoothing radius
of a particle.



36 CHAPTER 3. HYDRODYNAMICAL SIMULATIONS OF GALAXY CLUSTERS

Figure 3.2. Map of the gas density over the whole box of the first simulation at z = 0 (Borgani

et al., 2004), projected using a ray–tracing technique through a slice having thickness of 12h−1Mpc,

and containing the most massive cluster found in this simulation (upper right–hand side of the

figure).
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Figure 3.3. Map of the gas distribution of the four massive cluster from the second simulation

set, having mass Mvir∼> 1015 h−1M⊙. The maps enclose a region of 2Rvir from the center of the

cluster.
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by using low–resolution particles. These objects have a better mass resolution, with
mgas = 1.69 · 108 h−1M⊙. The gravitational softening length was kept fixed at ǫ =
30.0h−1kpc comoving (Plummer-equivalent) and was switched to a physical softening
length of ǫ = 5.0h−1 kpc below z = 5.

3.3.1 Thermal processes in the IntraCluster Medium (ICM)

The simple hydrodynamics does not completely describe the complex thermal evolution
of the ICM. For this reason, the simulations include some important physical processes
which play a key role in the thermodynamic evolution of the ICM. They are summarized
below:

• Radiative cooling is computed assuming an optically thin gas of primordial com-
position (mass–fractions of X = 0.76 for hydrogen and 1− X = 0.24 for helium) in
collisional ionization equilibrium, following Katz et al. (1996). The simulation also
includes a photoionizing, time–dependent, uniform ultraviolet (UV) background ex-
pected from a population of quasars (e.g. Haardt & Madau, 1996), which reionizes
the Universe at z ≃ 6. The effect of a photoionizing background is that of inhibiting
gas collapse and subsequent star formation within the haloes of sub-L∗ galaxies (e.g.
Benson et al., 2002), thus having a secondary impact at the resolution of our simu-
lation. Although the code includes a method to follow metal production, the effects
of metals are not included on the cooling function, owing both to code limitations
and to the approximate treatment of metal generation and diffusion. See Tornatore
et al. (2007) for a detailed description of metal enrichment in cluster simulations
with GADGET2.

• Star formation is treated using the hybrid multiphase model for the interstellar
medium introduced by Springel & Hernquist (2003). We refer to this paper for a
detailed description of the method, providing here only a short summary of the
model. The ISM is pictured as a two–phase fluid consisting of cold clouds that are
embedded at pressure equilibrium in an ambient hot medium. The clouds form from
the cooling of high–density gas, and represent the reservoir of baryons available for
star formation. When stars form, according to a Salpeter IMF (Salpeter, 1955),
the energy released by supernovae heats the ambient hot phase of the ISM, and in
addition, clouds in supernova remnants are evaporated. These effects establish a
tightly self–regulated regime for star formation in the ISM. The numerical imple-
mentation of this multiphase model describes each gas particle as composed by a
hot component, having its own mass and density, and a cold neutral component.
The relative amount of these two phases is determined by the local value of gas
density and temperature.

• Galactic winds. If not counteracted by some sort of feedback process, cooling is
well known to overproduce the amount of stars both in the average environment
and in the group/cluster overdense environment (e.g. Balogh et al., 2001; Borgani
et al., 2004, and references therein). As discussed by Springel & Hernquist (2003),
their multiphase ISM model alone does, however, not fully resolve this problem,
despite its ability to regulate the consumption of cold gas into stars within the ISM.
This is because the cooling rates within haloes remain essentially unaffected in the
model, i.e. the supply of gas to the dense star-forming ISM is largely unchanged,
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Figure 3.4. Comparison between simulated and observed projected temperature profiles. Left–

hand panel: comparison between simulated clusters with Tew > 3 keV and the observational

data points from the analysis of BeppoSAX data for 17 clusters by De Grandi & Molendi (2002).

Right-hand panel: comparison between simulated clusters with Tew > 4 keV and the best–fitting

universal temperature profiles measured by Allen et al. (2001) from their analysis of Chandra

data for a set of six relaxed clusters (dashed curve). In both panels, dotted lines are the profiles

for each single simulated cluster, while the heavy solid line is for the average profile. For reference,

the vertical dashed line in the left-hand panel indicates the average value of R2500.

while by construction the phases of the ISM remain coupled to each other, prevent-
ing baryons to leave the ISM (except for dynamical effects such as gas stripping
in mergers). However, galactic outflows are observed and expected to play a key
role in transporting energy and metals produced by the stellar population into the
IGM/ICM. To account for them, Springel & Hernquist (2003) suggested a phe-
nomenological description of galactic winds as an extension of their model, which
has been included in the simulation. According to the choice of parameters for the
feedback and wind scheme, star-forming gas particles contribute to the wind with
a mass outflow rate two times larger than their star formation rate, with a wind
velocity of approximately 360 km/s.

Physical processes included in the simulation are able to account for the basic prop-
erties of clusters, such as the scaling relations between mass, temperature and luminosity
(Borgani et al., 2004). At the same time, there are still some discrepancies between sim-
ulated and observed properties, in particular for the temperature and entropy profiles.
This may suggest that a more efficient way of providing non–gravitational heating from
feedback energy and/or additional physical processes are required to better reproduce
observed properties of the ICM, particularly in the inner regions.

The most interesting aspect is probably the temperature profile. Figure 3.4 presents
a direct comparison between the projected temperature profiles of the clusters in the
first simulation and two different sets of observations, namely the datapoints from the
analysis of 17 clusters observed with BeppoSAX by De Grandi & Molendi (2002) and the
best–fitting universal temperature profiles measured by Allen et al. (2001) from a set of
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Figure 3.5. The distribution of virial masses for the set of simulated clusters. The solid line is

for the whole sample, the shaded area is for the subset of clusters classified as regular (see text).

six relaxed clusters observed with Chandra, in the left and right panel respectively. For
a proper comparison with the observational results only simulated clusters with T > 3
keV have been selected in the first case, and Tew > 4 in the second case. The simulated
clusters show neither evidence for an isothermal core, nor a central smooth decline down to
approximately 1/2 of the virial temperature, as is found in the observations. Instead, they
steadily increase toward the cluster centre down to R ≃ 0.04R180, while a temperature
decrease is observed only in the innermost regions. It is worth noting that the slope of
the simulated profiles in the outer regions is similar to, although slightly shallower than,
the observed one. The comparison with observations suggests that there is an excess
of cooling (or more probably a lack of heating) in the simulation. In fact, the radiative
cooling causes a lack of pressure support in the cluster centre, so that the gas flows in from
outer regions, being heated by adiabatic compression (e.g. Tornatore et al., 2003). As a
result, the temperature actually increases in cooling regions, causing steeply increasing
temperature profiles.

3.3.2 The sample of simulated clusters

Clusters in the simulation box are selected by applying a friends–of–friends halo finder
to the distribution of DM particles, with a linking length equal to 0.15 times their mean
separation. For each group of linked particles with more than 500 members, we iden-
tify the particle having the minimum value of the gravitational potential. This par-
ticle is then used as a starting point to run a spherical overdensity algorithm, which
determines the radius around the target particle that encompasses an average density
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equal to the virial density for the adopted cosmological model, ρvir(z)∆c(z)ρc(z), where
ρc(z) = [H(z)/H0]

2ρc,0 is the critical density at redshift z and the overdensity ∆c(z) is
computed as described in Eke et al. (1996).

In the box of the first simulation we identify 117 clusters with virial mass Mvir >
1014 h−1M⊙, to which we add the four more massive clusters coming from the second
simulation. Therefore, our total sample comprises 121 objects, spanning the range of
virial masses Mvir ≃ 8 · 1013 − 3 · 1015 h−1M⊙. Their mass distribution is reported in
Figure 3.5. The dynamical state of the clusters is a key ingredient in tSZ and X–ray
studies, since almost all ICM models rely on the hypothesis of spherical (or at least axial)
symmetry of the gas distribution. For this reason, we select the clusters in our sample
which show a relaxed morphology in their X–ray image. Figure 3.6 shows a typical relaxed
cluster, characterized by a smooth profile, while figure 3.7 shows an unrelaxed cluster,
which instead exhibits a number of substructures. We select 71 relaxed clusters in our
sample, whose mass distribution is shown as well in figure 3.5, with the shaded area.

3.3.3 Generation of tSZ, X–ray and temperature maps

The work presented in this Thesis is based on the analysis of synthetic SZ, X–ray and
temperature maps of simulated clusters. This section describes the procedure used to
compute ideal maps, which are used for the analysis presented in Chapter 4. In Chap-
ter 5 and 6 instead these ideal SZ and X–ray maps are convolved with a noise scheme
modelled on the CCAT and on the Chandra telescope respectively, in order to introduce
instrumental effects (see Section 5.2.1).

The X–ray maps presented here have also been used to study the role of merger pro-
cesses in defining scatter into the mass–temperature relation (Ventimiglia et al., 2006),
by using three different statistics designed to measure X–ray surface brightness substruc-
tures (namely the centroid variation w, the axial ratio η and the power rations P20 and
P30, see the paper for details). The deviation of each cluster from the mass–temperature
relation is found to be correlated with each of the adopted substructure estimators. In
particular, clusters with more substructures tend to be cooler for a fixed halo mass. These
results suggest that a three–parameter fit of the mass–temperature relation which includes
substructure information should be preferred with respect to the simple two–parameter
fit.

Around each cluster we extract a spherical region extending out to 6 Rvir. Following
Diaferio et al. (2005), we create maps of the relevant quantities along three orthogonal
directions, extending out to about 2 Rvir from the cluster centre. Each map is a regular
512 × 512 grid.

We distribute the quantity of each particle on the grid points within a circle of radius
equal to the smoothing length h (see Section 3.2) centred on the particle, according to
the SPH smoothing kernel W (x) eq. (3.7). Specifically, we compute a generic quantity
qjk on the (j, k) grid point as

qjkd
2
p =

∫

q(r)dld2
p =

∑

i

qi(mi/ρi)wi (3.8)

where d2
p is the pixel area, the sum runs over all the particles, and wi ∝

∫

W (x)dl is the
weight proportional to the fraction of the particle proper volume mi/ρi which contributes
to the (j, k) grid point. For each particle, the weights wk are normalized to satisfy the
relation

∑

k wk = 1 where the sum is now over the grid points within the particle circle.
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Figure 3.6. Maps of the X-ray brightness and SZ y parameter for a regular simulated cluster

having virial mass Mvir ≃ 1.4 · 1014 h−1M⊙, R500 = 0.53h−1Mps and Tsl = 2.2 keV. The map

extends out to 2 Rvir, so that it covers a physical scale of 6.05 h−1Mpc for this cluster. Each map

is done with a 512 × 512 pixelization.
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Figure 3.7. The same as figure 3.6, but for an unrelaxed simulated cluster having virial mass

Mvir ≃ 4.1 · 1014 h−1M⊙.
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When hi is so small that the circle contains no grid point, the particle quantity is fully
assigned to the closest grid point.

Maps of the X–ray surface brightness

The X–ray surface brightness is given by the integral of gas emissivity ǫ, i.e. by taking:

q ≡ 1

4π(1 + z)4
ǫ =

1

4π(1 + z)4
nenHΛ(T ) (3.9)

The number density of electrons ne and of protons nH and the cooling function Λ(T ) are
computed by assuming a completely ionized gas with primordial chemical composition
(with mass fractions XH = 0.76 and XHe = 0.24 for hydrogen and helium respectively).
Note also that the cooling function has to be redshifted, so it is actually Λ(T, z). However,
we compute (and then analyze) the maps in the rest–frame of the cluster, regardless of
its redshift. Since our aim is to study the integrated flux in order to derive the gas
density profile, the soft band [0.5–2] keV is assumed, which has a weak dependence on
temperature and do not present strong emission lines.

The upper part of Figure 3.6 shows an example of the X-ray surface brightness map of
a cluster in our simulation (with Mvir ≃ 1.4 ·1014 h−1M⊙). In the image visible a number
of substructure and clumps are clearly visible, which are emphasized by the dependence
of the X–ray signal on the squared gas density. In X–ray observations most of these
clumps remains undetected, owing to the instrument resolution. They have the effect of
artificially boosting the X–ray signal, thus generally leading to an overestimate of gas
density.

Maps of the thermal Sunyaev–Zeldovich effect (tSZ)

We generate the maps of the y parameter, since this quantity is independent of the
assumed observing frequency, so in this case:

q ≡ ne
kBTe

mec2
σT . (3.10)

As in the X–ray maps, the electron number density ne is computed by assuming a com-
pletely ionized gas of primordial composition.

The lower part of Figure 3.6 shows an example of the tSZ map of a cluster in our
simulation (with Mvir ≃ 1.4 · 1014 h−1M⊙). Owing to its dependence on neT , the tSZ
signal is much less affected than the X–ray surface brightness by the presence of gas
clumping. For the same reason, the tSZ signal decreases more slowly with radius (note
the difference in the scale of the X–ray and tSZ maps: the first encompasses 8 orders of
magnitude, the second only 4). This means that on one hand the tSZ can be detected out
to fairly large cluster radii, but on the other hand it is more sensitive to the presence of
fore/background contaminations, which may give a substantial contribution to the total
signal.

Maps of temperature

The projected temperature represents the mean of the temperature of the gas along the
line of sight. In a general form the mean temperature can be defined as

〈T 〉 =

∑

i wiTi
∑

i wi
(3.11)
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where wi is the weighting function, which depends on the assumed temperature definition.
The projected temperature map will be given by the ratio of two maps, of which the first
(nominator, N) is the integral of the temperature weighted by the function w, while the
second (denominatior, D) represents the normalization. The two maps are computed by
assuming:

qN ≡ wiTi (3.12)

and

qD ≡ wi (3.13)

for the contribution carried by eache pixel to the numerator and denominator of eq. (3.11).
In the following section, we will describe three temperature definitions, which have been
introduced with the purpose of comparing simulation results with observations.

3.4 Definitions of temperature

The comparison between the properties of simulated and real galaxy clusters is compli-
cated by different problems, produced both by projection effects and by instrumental
artefacts, like instrument response, sky background and instrumental noise. A further
complication can arise from a possible mismatch between the spectroscopic temperature
estimated from X–ray observations and the temperature definition used for numerical
results. In most X–ray studies, the temperature is obtained by fitting the projected spec-
trum with a single–temperature model. One generally expects the resulting temperature
to represent a mean of the temperature of the emitting gas along the line of sight. How-
ever, the way in which this mean should be computed is not obvious, despite the fact that
it represents a critical point when aiming at comparing thermal properties of simulated
galaxy clusters with those found in X–ray observations.

The electron temperature is naturally defined by:

Te =

∑

i ne,iTi
∑

i ne,i
, (3.14)

where ne,i and Ti are defined as the electron number density and the temperature carried
by the i–th simulation gas particle. It coincides with the mass–weighted temperature in
the limit of a fully ionized plasma of uniform metallicity. This temperature definition
has a relevant physical meaning, since it represents a measure of the thermal energy of
the gas, which is simply E ∝ mTe. Unfortunately, this temperature definition would give
temperature estimates which differ significantly from what would be derived from X–ray
observations.

In order to have a more realistic comparison with the spectroscopic fits, a different
definition was then introduced, the emission–weighted temperature (e.g. Evrard et al.,
1996):

Tew =

∑

i ǫiTi
∑

i ǫi
, (3.15)

where ǫi ∝ n2
e,iΛ(Ti) is the emissivity associated to the i-th gas particle. The cooling

function Λ(T ) can be computed over an energy band, comparable to that where the X–
ray spectrum is fitted in observational data analyses. In the following, we compute the
emission–weighted temperature in the [0.5–7] keV band, since this is the band tipically
used for spectral fittings in X–ray observations. Since the X–ray emissivity is proportional
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Figure 3.8. Maps of the emission-weighted (top left), mass-weighted (top right) and

spectroscopic-like (bottom left) temperature for the same cluster of Figure 3.6.
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Figure 3.9. Comparison between different temperature definitions for the same cluster, i.e. Tsl

and Tew vs Tmw. Red squares and black circles represent Tew, Tsl and Tmw respectively. The dotted

line represents the one–to–one relation. All quantities are computed within the virial radius.
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Figure 3.10. Relation between the virial mass of the cluster and its mean temperature, computed

following the three definitions. Red squares, black circles and cyan triangles represent Tew, Tsl

and Tmw respectively. All quantities are computed within the virial radius.
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to the square of the gas density, then it is expected that the spectroscopic temperature,
based on the numer of emitted photons, is determined more by regions at higher density
than by those at lower density.

However, Mathiesen & Evrard (2001) were the first to show that the emission–weighted
temperature does not necessarily represent an accurate approximation to the spectroscopic
temperature. Mazzotta et al. (2004) have further motivated and quantified this difference,
connecting it to a thermally complex structure of the ICM. These authors suggested an
approximate expression for the spectroscopic temperature, the spectroscopic–like temper-
ature:

Tsl =

∑

i n
2
e,iT

a−1/2
i

∑

i n
2
e,iT

a−3/2
i

, (3.16)

where a is a fitting parameter. Mazzotta et al. (2004) have shown that eq.(3.16) with
a = 0.75 closely reproduces the spectroscopic temperature of clusters at least as hot as
2 − 3 keV, with a few per cent accuracy, after excluding all the gas particles colder than
0.5 keV from the sums in eq.(3.16). More recently, Vikhlinin (2006) has generalized the
above expression for Tsl to include the cases of lower temperatures and arbitrary ICM
metallicity.

In Figure 3.8 are the maps of the emission-weighted, mass-weighted and spectroscopic-
like temperature for the same cluster of Figure 3.6, which highlights the effects of using
different definitions when computing the projected temperature. Generally Tew overesti-
mates the gas temperature, since it mostly weights the central regions of the cluster, which
are characterized by a higher temperature, as highlighted by the steep negative tempera-
ture profiles in the core regions. Instead, Tsl is generally biased toward the colder thermal
components, which dominate the spectrum. Another important difference among them
is capability of detecting steep temperature gradients, as those related to shock fronts.
In the maps one can see two small merging structures (see the arrow in the figure). The
temperature jump is clearly visible in the Tew map, still present in the Tmw map, but
it almost disappears in the Tsl map. This may explain why shock fronts are common
features in simulations of galaxy clusters, while they have been clearly observed only in
very few cases of extremely strong merging events.

In the figures 3.9 and 3.10 we show the relations between these temperature definitions
and the mass-weighted temperature and the virial mass, respectively. Both the Tew and
the Tsl are generally larger than the Tmw. As for the relation with the mass, the Tew

shows a larger normalization than Tsl, by about 20− 30%. This difference has important
implications when this relation is used for cosmology studies; in fact Rasia et al. (2005)
showed that this turns out into a 15% difference in the inferred σ8. Also the scatter is
quite different when using these three temperature definitions. As expected, Tmw has a
very tight relation with mass, since it is directly proportional to the total thermal content
of the cluster. Also Tew has a low scatter, however one may notice some deviations mainly
due to large substructures. Finally, Tsl is highly sensitive to the presence of cold clumps,
hence it shows a larger scatter compared to the other two.
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Chapter 4

The angular diameter distance
measurement

For almost three decades it has been recognized that the combination of X–ray and tSZ
observations of galaxy clusters provides a direct measurement of the cosmic distance scale,
under the assumption of spherical symmetry for the intra–cluster gas distribution (e.g.
Gunn, 1978; Silk & White, 1978; Cavaliere et al., 1979; Birkinshaw, 1979). The method
is based on the different dependence on the electron number density, ne, of the X–ray

emissivity (∝ n2
eT

1/2
e for thermal bremsstrahlung; here Te is the electron temperature)

and of the tSZ signal (∝ neTe).

Due to the crucial role played by the assumption of spherical symmetry, a great deal
of efforts have been spent either to select individual clusters having very relaxed and
regular morphology (e.g. Holzapfel et al., 1997; Hughes & Birkinshaw, 1998; Grainge
et al., 2002; Bonamente et al., 2004), or to build suitable cluster samples over which
averaging out the uncertainties due to intrinsic cluster ellipticity (e.g. Mason et al., 2001;
Reese et al., 2002; Udomprasert et al., 2004; Jones et al., 2005). These analyses have
provided estimates of the Hubble constant, H0, which are generally consistent with those
obtained from the Cepheid distance scale (e.g. Freedman et al., 2001) or inferred from the
spectrum of the CMB anisotropies (e.g. Spergel et al., 2003), although with fairly large
uncertainties. Although the dominant source of uncertainty is probably represented by the
contamination of the tSZ signal by the CMB and point–sources (e.g. Udomprasert et al.,
2004), significant errors are also associated to cluster asphericity, clumpy gas distribution
and incorrect modeling of the thermal structure of the intra–cluster medium (ICM).

So far, the limited number of high–redshift clusters with both tSZ and X–ray observa-
tions, with their relatively large uncertainties, made the calibration of the cosmic distance
scale mostly sensitive to the value of H0, while no significant constraints have been placed
on the values of the matter density parameter Ωm and the cosmological constant. In the
coming years, ongoing X–ray (e.g., Mullis et al., 2005), optical (e.g., Gladders & Yee,
2005), and planned or just started tSZ surveys (see Section 2.3.2). promise to largely
increase the number of observed clusters out to z ∼ 1.5. This may well open the pos-
sibility to use tSZ/X–ray cluster observations to place constraints on the dark matter
and dark energy content of the Universe through the redshift dependence of the angular
diameter distance (Molnar et al., 2002). This highlights the paramount importance of
having observational uncertainties and potential biases under control.

In this respect, numerical hydrodynamical simulations of galaxy clusters may offer an
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important test–bed where to quantify observational biases and keep the corresponding
uncertainties under control. For instance, eliminating ne from the tSZ and X–ray signal
leaves a sensitive dependence of the angular–diameter distance, DA, on the electron tem-
perature (see §2). On the other hand, temperature measurements of the ICM have been
so far entirely based on fitting the X–ray spectrum to a suitable plasma model. How close
is the resulting spectral temperature to the electron temperature depends on the com-
plexity of the thermal structure of the ICM (e.g., Mazzotta et al., 2004). Hydrodynamical
simulations of clusters offer a natural way to quantify the bias introduced by replacing
the electron temperature with the X–ray temperature.

Furthermore, the standard assumption in the tSZ/X–ray calibration of the cosmic
distance scale is that of the isothermal ICM, while X–ray observations of clusters clearly
show the presence of significant temperature gradients (e.g. Markevitch et al., 1998; De
Grandi & Molendi, 2002; Vikhlinin et al., 2005). To overcome this problem, several
authors estimate the bias introduced by the isothermal approximation, finding that the
distance can be biased by ∼< 20 per cent (e.g. Birkinshaw & Hughes, 1994; Udomprasert
et al., 2004; Holzapfel et al., 1997). Simulations of galaxy clusters naturally produce
temperature gradients that, at least at large radii, are close to the observed ones (e.g.,
Loken et al., 2002; Borgani et al., 2004; Kay et al., 2007; Nagai et al., 2007). Therefore,
simulations can be used to quantify the bias introduced by the assumption of isothermal
gas.

Finally, using a representative set of galaxy clusters in a cosmological framework allows
one to trace the distribution of ellipticity and, therefore, to calibrate the corresponding
scatter in the measurement of the distance scale. Nowadays, cosmological hydrodynam-
ical codes have reached a high enough efficiency, in terms of both achievable resolution
and description of the gas physics, to provide a realistic description of the processes of for-
mation and evolution of galaxy clusters (e.g. Borgani et al., 2004; Kravtsov et al., 2005).
For instance, Kazantzidis et al. (2004) found that halos in hydrodynamical simulations
including cooling are significantly more spherical than in non–radiative simulations. Since
the assumption of sphericity is at the basis of the X–ray/tSZ method to estimate DA,
this highlights the relevance of properly modeling the physics of the ICM for a precise
calibration of the cosmic distance scale.

The purpose of the analysis presented in this Chapter is to understand the impact of
the above discussed systematics on the calibrations of the cosmic distance scale from the
combination of tSZ and X–ray observations, by analyzing an extended set of hydrody-
namical simulations of galaxy clusters. These simulations have been performed using the
TREE+SPH GADGET–2 code (Springel et al., 2001; Springel, 2005b), for a concordance
ΛCDM model, and include the processes of radiative cooling, star formation and super-
nova feedback. The set of simulated clusters contains more than 100 objects having virial
masses in the range (2 − 20) × 1014h−1M⊙.

The plan of the Chapter is as follows. In Section 4.1 we present the polytropic β–model
which we adopt. In Section 4.2 we review the method to estimate the angular–diameter
distance from X–ray and tSZ cluster observations. We present our results in Section 4.3,
where we show the results on the accuracy of the measurement of DA. We discuss and
summarize our main results in Section 4.4.
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4.1 The polytropic β–model

A common procedure adopted to extract DA from the combination of eqs. (2.6) and (2.3)
is based on modeling the electron density profile with the β-model (see Section 2.3.1):

ne(r) = ne0

[

1 +

(

r

rc

)2
]−3β/2

, (4.1)

As for the temperature structure of the ICM, a number of analyses of X–ray data in-
dependently show that galaxy clusters are far from being isothermal. Significant nega-
tive gradients characterize the temperature profiles of galaxy clusters, at least on scales
R∼> 0.2R200 (e.g. Markevitch et al., 1998; De Grandi & Molendi, 2002; Pratt & Arnaud,
2002; Piffaretti et al., 2005; Vikhlinin et al., 2005; Pratt et al., 2007), with positive gra-
dients associated only to the innermost cooling regions (e.g. Allen et al., 2001; Snowden
et al., 2007). The dynamic range covered by the tSZ signal extends on scales which are
relatively larger than those sampled by the X–ray emission. For this reason, one may
expect that a systematic effect is introduced by assuming the ICM to be isothermal when
combining X–ray and tSZ observations. Since the tSZ signal has a stronger dependence
on the ICM temperature than the X–ray one, the effect of assuming an isothermal ICM,
in a regime where the temperature is decreasing, may lead to predict y(θ)–profiles which
are shallower than the intrinsic ones (see figure 4.1).

In order to account for the presence of temperature gradients, we introduce a poly-
tropic equation of state, p ∝ ργ , which relates the gas pressure p to the density ρ, where
γ is the polytropic index (γ = 1 for isothermal gas). The three-dimensional temperature
profile is thus

Te(r) = Te0

(

ne

ne0

)γ−1

= Te0

[

1 +

(

r

rc

)2
]−3β(γ−1)/2

, (4.2)

where Te0 is the temperature at the cluster center.

4.2 DA from combined X-ray and tSZ observations

Using the above expression for the temperature profile in the definition of the Comp-
tonization parameter of eq. (2.6) gives

y(θ) = y0

[

1 +

(

θ

θc

)2
](1−3βγ)/2

, (4.3)

where the Comptonization parameter at the cluster center is

y0 = DAne0θcσT
kBTe0

mec2

√
π

Γ(3βγ/2 − 1/2)

Γ(3βγ/2)
, (4.4)

where kB is the Boltzmann constant, σT is the Thomson cross section, me is the mass of
the electron, c is the speed of light.

Similarly, we obtain the X–ray surface brightness profile

SX(θ) = SX0

[

1 +

(

θ

θc

)2
]{1−6β[(γ+3)/4]}/2

, (4.5)
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where the central surface brightness is

SX0 = DAn2
e0θc

µe/µHΛeH(Te0)

4
√

π(1 + z)4
Γ(3β[(γ + 3)/4] − 1/2)

Γ(3β[(γ + 3)/4]
, (4.6)

where µe and µH are the mean molecular weights of electrons and protons, respectively,
and ΛeH is the X–ray cooling function normalized to nenH .

In deriving the above equation, the dependence of the cooling function on Te is as-
sumed to be a power law, Tα, with index α = 0.5. This is valid in the case of pure
bremsstrahlung emission and represents a good approximation in the case of bolometric
emissivity. However, our emissivity maps are build in the soft band ([0.5-2] keV). In this
energy range the cooling function is significantly flatter (e.g. Ettori, 2000), owing to dif-
ferent reasons in different temperature regimes. For relatively cool systems (T∼< 2 keV)
the flattening is due to the contribution of metal emission lines. At higher temperatures
instead the restricted energy window (compared to the bolometric one) does not encom-
passes the cut–off energy of the radiation spectrum. So, an increase in the temperature
of the emitting gas, which shifts the cut–off to higher energies, will substantially increase
the emissivity in the bolometric band, but will have a very little effect in the soft one.
In order to test the effect of approximating the cooling function with a bremsstrahlung
shape, we repeated our analysis also in the bolometric band and found variations in the
final distance estimates by ∼< 10%.

Finally, by eliminating ne0 from eqs.(4.4) and (4.6), we obtain the angular–diameter
distance

DA =
y2
0

SX0

[

mec
2

kBTe0

]2
ΛeH(Te0)µe/µH

4π3/2σ2
T (1 + z)4

1

θc

×
[

Γ(3βγ/2)

Γ(3β/2 − 1/2)

]2 Γ(3β[(γ + 3)/4] − 1/2)

Γ(3β[(γ + 3)/4])
. (4.7)

For γ = 1, the above expression reduces to that usually adopted in observational analyses
based on combining X–ray and tSZ cluster observations (e.g. Reese et al., 2002; Udom-
prasert et al., 2004; Bonamente et al., 2004), which relies on the assumption of isothermal
gas.

It is worth reminding here that, while simulations are rather successful in reproducing
the negative temperature gradient in the outer cluster regions (e.g. Evrard et al., 1996;
Eke et al., 1998; Loken et al., 2002; Rasia et al., 2004), they generally produce too steep
profiles in the central cluster regions, especially when radiative cooling is included (e.g.
Katz & White, 1993; Tornatore et al., 2003; Valdarnini, 2003; Borgani et al., 2004). Since
observed clusters are characterized by a core region which is closer to isothermality than
the simulated ones, we expect that the effect of using a polytropic temperature profile
when analyzing simulated clusters is larger than the actual effect taking place in real
clusters.

In the following, besides using the electron temperature, we also perform our analysis
by relying on the temperature proxies of eqs.(3.15) and (3.16). Therefore, comparing
the results based on the electron temperature and on the spectroscopic–like temperature
provides a check of the bias introduced by using the X–ray temperature in the estimate of
DA, a bias possibly present also in the analysis of real data. Furthermore, the comparison
between emission–weighted and spectroscopic–like temperature provides a hint on the
bias introduced in the simulation analysis when using an inaccurate proxy to the X–ray



4.3. RESULTS 55

temperature. It is worth reminding here that, due to the finite time for electron–ion
thermalization, the corresponding electron and ion temperature may differ, for instance
as a consequence of continuous shocks (e.g., Yoshida et al., 2005). A sizable difference
among these two temperatures may induce a bias in the estimate of the distance scale.

Except for using different definitions of temperature, we do not investigate the effect
of a realistic observational setup for the detection of both the tSZ and X–ray signals.
Besides the statistical errors associated to time–limited exposures, we also neglect the
effects of systematics (e.g., instrumental noise, foreground and background contribution
from contaminants, etc.). A detailed analysis of the contaminations in the tSZ signal has
been provided by Knox et al. (2004) and by Aghanim et al. (2004). A comprehensive
description of the instrumental effects on the recovery of X–ray observables, calibrated on
hydrodynamical simulations, has been provided by Gardini et al. (2004) (see also Rasia
et al., 2006b). In this sense, our analysis will be based on ideal maps, which are free of
any noise. We defer to a future analysis the inclusion of the errors associated to realistic
X–ray and tSZ observational setups.

4.3 Results

In this section we present our results on the reliability of the usual procedure to recover
the angular–diameter distance from the combination of the tSZ and X–ray emission of
clusters, by using both the isothermal and a more general polytropic equation of state for
the ICM. The set of simulated clusters which we analyze is described in Section 3.3.

4.3.1 Results from the isothermal model

Unlike X–ray observations, current observations of the tSZ effect in clusters do not allow to
perform any spatially resolved analysis. For this reason, the commonly adopted procedure
is to determine the parameters θc and β, which determine the β–model density profile,
from the X-ray imaging alone, along with the normalization SX0. The tSZ profile is then
used to obtain the central value of the Comptonization parameter, y0, by using the β-
model parameters as determined from the X-ray profile. By following this procedure, we
fitted all the profiles out to R500, which is defined as the radius encompassing an average
density of 500 times the critical cosmic density. We point out that R500 corresponds
to the typical outermost radius where X-ray observations provide surface brightness and
temperature profiles. We exclude from the analysis the central regions of the clusters,
within 1/20Rvir, which are strongly affected by gas cooling and are close to the numerical
resolution of the simulations.

In Figure 4.1 we show the profiles of the X–ray surface brightness and Compton–y for
the example cluster of figure 3.6, along with the best–fitting β–model for the isothermal
case. For this relaxed cluster, the β–model provides a rather good fit to the X-ray profile.
Only the central point, which is anyway excluded from the fit, is higher than the β–model
extrapolation, as a consequence of the high–density gas residing in the cluster cooling
region. The resulting values of the fitting parameters for this cluster are β = 0.835 and
rc/R500 = 0.196. Fitting the y(R) profile with eq. (4.3), after setting β = 0.835 and γ = 1,
leads to an underestimate of y0. In fact, the resulting Compton–y profile is significantly
shallower than measured (Figure 4.1). This result follows from neglecting the presence
of negative temperature gradients. Consequently we tend to underestimate DA, because
DA ∝ y2

0 (seeeq. 4.7). In this particular case we underestimate DA by 56 per cent.
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Figure 4.1. The projected radial profiles of X–ray surface brightness (left panel) and of Compton–

y parameter (right panel) for the cluster shown in figure 3.6. Symbols are for the results of the

simulation analysis while the solid curves are the predictions of the isothermal β–model.

This result for one particular cluster is confirmed by the distribution shown in the left
panel of Figure 4.2 (see also Table 4.1). In this figure we report the distribution of the
ratios Drec

A /Dtrue
A between the recovered and the true values of the angular–size distance.

Such results clearly demonstrate that the angular–size distance is biased low, on average,
by more than a factor two, as a consequence of the underestimate of y0 induced by the
assumption of an isothermal ICM. In order to verify a possible temperature dependence
of the DA distribution, in the left panel of figure 4.2 we also show the results for the
clusters with Tsl in the range 2.5–5 keV and for those hotter than 5 keV. While the latter
are too few to allow any meaningful conclusion, the clusters at intermediate temperature
have a distribution which is statistically consistent with that of the whole sample. This
indicates the absence of any obvious trend of our results with the cluster size. The results
reported in this figure have been obtained by using the electron–weighted temperature
estimate for the simulated clusters. If we had used the emission–weighted temperature, we
would have obtained an even stronger bias (eq. 4.7), because this temperature generally
overestimates the electron temperature.

Including dynamically disturbed clusters does not significantly affect the average value
of the recovered DA. However, the resulting distribution is clearly asymmetric and
presents a large tail towards low DA values. In fact, eqs. (2.6) and (2.3) show that
that DA ∝ 〈ne〉2/〈n2

e〉. Therefore, the presence of clumps in the gas distribution produces
an underestimate of DA by this factor with respect to a completely smooth gas distri-
bution. By looking at the distributions of the β and rc (central and left panels of figure
4.2), unrelaxed structures tend to have rather flat gas density profiles. Fitting them with
a β–model forces the slope to be very small, with a preference for the core radius to be
consistent with zero. For instance, the cluster shown in figure 3.7 requires β = 0.52 and
rc/R500 = 0.03, while its estimate of the angular–size distance gives Drec

A /Dtrue
A = 0.17.

As a word of caution in interpreting such results, we emphasize that this bias in the
DA estimate, due to the isothermal gas assumption, is likely to represent an overestimate
of the actual effect in real cluster observations for at least two reasons. First, radiative
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Figure 4.2. The distribution of the values of Drec
A /Dtrue

A (left panel), of β (central panel) and of

rc (in units of R500; right panel). The dashed and the solid lines are for the whole sample and for

the subset of clusters classified as regular, respectively. Also shown with the light and dark gray

areas are the corresponding distributions for the subset of the clusters with 2.5 < Tsl(keV ) < 5

and Tsl(keV ) > 5, respectively. The distribution of Drec
A /Dtrue

A is obtained by using the electron–

weighted temperatures of the simulated clusters in eq. (4.7).

simulations of clusters are known to produce temperature gradients that, in the central
regions, are steeper than observed (see Section 3.3.1). As a consequence, simulated clus-
ters exaggerate the departure from isothermality. Second, the β–model fitting to the
Compton–y profile has been performed by assigning equal weight to all radial bins, with
the more external regions bringing down the overall normalization of the model profile. In
a realistic observational setup, the signal from central cluster regions should have a rela-
tively larger weight, thus reducing the bias in the recovered y0. Addressing appropriately
this issue would require implementing detailed mock tSZ observations of our simulated
clusters, a task that we defer to a future analyses. Even keeping in mind these warnings,
it is clear that deviations from isothermality must be taken into account for a precise cal-
ibration of the cosmic distance scale from the combination of X–ray and tSZ observations
of galaxy clusters (e.g., Udomprasert et al., 2004).

4.3.2 Results from the polytropic fit

In the case of a more general polytropic equation of state, the parameters β and γ are
calculated by requiring the model to reproduce at the same time both the X-ray surface
brightness and the temperature profiles. After obtaining the core radius rc and the nor-
malization SX0 from the X-ray profile, and T0 from the temperature profile, we combine
the two exponents in eqs. (4.5) and (4.2) to derive both β and γ, with y0 finally obtained
from the tSZ profile.

In Figure 4.3 we show the temperature and Compton–y profiles for our example clus-
ter, along with the best–fitting predictions of the polytropic β–model, for the three dif-
ferent definitions of temperature. The polytropic equation of state provides a reasonable
approximation to all temperature profiles and, unlike the isothermal case, allows us to
correctly predict also the Compton–y profile. The corresponding distributions of β and γ
are shown in Figure 4.4 (we do not report the distribution of rc, since it is, by definition,
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All Regular
clusters clusters

Isothermal 0.41 ± 0.27 0.44 ± 0.11

0.42+0.14
−0.22 0.45+0.10

−0.10

Polytropic
Tew 0.76 ± 0.74 0.80 ± 0.15

0.78+0.19
−0.37 0.81+0.14

−0.17

Te 0.95 ± 0.49 1.04 ± 0.22

0.98+0.31
−0.47 1.05+0.21

−0.26

Tsl 0.99 ± 0.26 0.97 ± 0.18

0.92+0.25
−0.46 0.98+0.18

−0.20

Table 4.1. The values of the accuracy in recovering the angular–diameter distance, Drec
A /Dtrue

A ,

using both the isothermal and the polytropic model, and using the emission–weighted, the electron

and the spectroscopic–like definitions of temperature. For each of them, the first line reports the

mean and standard deviation, the second the median and the limiting values encompassing 68%

of the data.

Figure 4.3. Profiles of temperature (upper panels) and of Compton–y parameter (lower panels)

for the cluster of figure 3.6. Left, central and right panels corresponds to using emission–weighted,

electron and spectroscopic–like temperature, respectively. Open symbols are for the profiles from

the simulation analysis, while the curves are the best–fitting polytropic β–model.
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Figure 4.4. Distributions of the values of β (left panel) and γ (right panel), using emission–

weighted (solid line), electron (dotted line) and spectroscopic–like (dashed lines) temperatures,

respectively, as obtained for the whole sample of 121 clusters.

identical to that of the isothermal model). For both quantities, the effect of using different
definitions of temperature is rather small. As expected, using a polytropic temperature
profile implies only a modest decrease of the β values, because of the weak temperature
dependence of the cooling function. All the three distributions of γ have an average value
≃ 1.2, similar to observational estimates (e.g. De Grandi & Molendi, 2002). Moreover, the
scatter in this distribution is so small to make the isothermal ICM an extremely unlikely
event.

The results obtained for DA are shown in Figure 4.5, and also reported in Table 4.1,
using emission–weighted, electron and spectroscopic–like temperatures. Quite interest-
ingly, the improved quality of the fit to the profile of the Compton–y parameter now
makes the distribution peak at a value much closer to the correct DA, independently of
whether we use the whole sample or the subsample of relaxed clusters.

The angular–diameter distance is correctly recovered when using either the electron
or the spectroscopic–like temperature with deviations which are always ∼< 5 per cent, on
average. This is a rather encouraging result, since it indicates that any bias, induced by
using the temperature as measured from X–ray observations, is in fact rather small. Using
instead the emission–weighted temperature turns into a systematic underestimate of DA

by about 20 per cent, as a consequence of the fact that it is systematically higher than the
electron temperature. For all the definitions of temperature we find a significant intrinsic
scatter, of about 20 per cent on average, in spite of our selection of regular objects.

The fact that the scatter is stable against the definition of temperature implies that
it is almost insensitive to the thermal structure of the ICM and, therefore, to the details
of the ICM physics. This scatter instead quantifies the effect of departure from spherical
symmetry of the ICM spatial distribution. In fact, the above scatter increases to about
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Figure 4.5. Distributions of the accuracy in recovering the correct value of the angular–diameter

distance, Drec
A /Dtrue

A , using the polytropic β–model for the whole sample (dashed line) and for

the subset of regular clusters (solid), using emission–weighted (left panel), electron (central panel)

and spectroscopic–like (right panel) temperature. Also shown with the light and dark gray areas

are the corresponding distributions for the subset of the clusters with 2.5 < Tsl(keV ) < 5 and

Tsl(keV ) > 5, respectively. The vertical dotted line in each histogram represents the mean value

of the distribution for the sample of regular clusters.

50 per cent, if no preselection of regular clusters is implemented (Table 4.1). Quite
remarkably, the intrinsic scatter calibrated with our simulations is rather close to the 17
per cent value, reported by Hughes & Birkinshaw (1998), for the uncertainty induced by
the intrinsic cluster ellipticity.

Similarly to the case of the isothermal fit, we note from figure 4.5 that the low–
DA tails of the distributions are contaminated by irregular clusters, for which DA is
very badly recovered. For instance, for the irregular cluster shown in figure 3.7 we find
Drec

A /Dtrue
A = 0.30 when using the electron temperature. Similarly to the case of the

isothermal fit, also in this case the distribution of the hot clusters is consistent with that
of the regular cluster subset.

4.3.3 Implications for cosmological parameters

The precision in the recovery of the angular–size distance when using the polytropic model
indicates that this method is potentially accurate to estimate cosmological parameters.
In order to test this we create a simple mock catalog of clusters, which is obtained by
distributing 2/3 of our regular clusters uniformly in redshift in the range 0.1 < z < 0.5,
while the remaining 1/3 is distributed uniformly in the range 0.5 < z < 1.5. Recall that
each simulated cluster is observed along three orthogonal lines of sight and the redshift of
each projection is chosen randomly. Figure 4.6 shows the resulting distribution of clusters
in the DA–z plane. We remind here that our simulated clusters have been identified at
z = 0. Therefore, our procedure to distribute them at z > 0 neglects the effect of
their possible morphological evolution. We have been forced to this choice by the small
volume of our simulation box, which implies the rapid disappearance of reasonably massive
clusters inside the high–redshift simulation box.

For the estimate of the Hubble constant, H0, we limit the analysis to the 66 clusters
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Figure 4.6. Estimated DA vs. z for the regular cluster sample: 2/3 of this sample was uniformly

distributed in the redshift range 0.1 < z < 0.5 and 1/3 in the range 0.5 < z < 1.5. On the

left (right) panel is shown the angular–size distance obtained using the electron (spectroscopic-

like) temperature and the polytropic gas model. The symbols indicate clusters spectroscopic

temperature: Tsl(keV ) < 2.5 (triangles), 2.5 < Tsl(keV ) < 5 (squares) and Tsl(keV ) > 5 (circles).

The solid line shows the DA–z relation for the ΛCDM cosmology assumed in the simulations.

at z < 0.3. Including high redshift objects would make the recovery of H0 progressively
more dependent on the knowledge of the underlying cosmology. When using the electron
temperature, the distribution of the H0 values has mean H0 = 70±2 km s−1Mpc−1; when
using the spectroscopic temperature this mean is H0 = 75 ± 2 km s−1Mpc−1. In both
cases the uncertainties are the 1 − σ standard deviations. These values are obtained by
assuming the correct values of ΩM and ΩΛ. When assuming the Einstein–de-Sitter model,
we find H0 biased low by 8 per cent.

As for the estimate of the matter density parameter Ωm, we fix the value of H0

to its true value and assume flat geometry. In this case, we use the 73 clusters lying at
z > 0.5. Estimating Ωm as the average of the values yielded by each cluster would provide
unreliable results; in fact, inaccurate values of DA can imply negative values of Ωm, which
are clearly unphysical. Therefore, we compute the best–fitting value of Ωm with a χ2–
minimization procedure. To associate the uncertainty to the estimated Ωm, we resort
to a bootstrap resampling procedure (e.g. §15.6 of Press et al. 1992). Each bootstrap
sample is constructed by randomly selecting, with repetition, the objects from the original
sample. Each time that a cluster is selected, its DA is perturbed with a Gaussian random
shift with variance 20%, independently of redshift, to account for the “observational”
uncertainties. The application of this procedure, when using the electron temperature,
gives Ωm = 0.29 ± 0.05; we obtain Ωm = 0.36 ± 0.06, when using the spectroscopic–
like temperature. The uncertainties are the 1 − σ standard deviations computed with
100 bootstrap resamplings. The two temperature definitions provide two Ωm’s whose
difference is consistent with the difference in the median values of DA. Moreover, and
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reassuringly, in both cases the central values are consistent with the true value of Ωm.

The small size of the errobars of the estimated Ωm’s should be clearly taken with
caution for at least two reasons. First of all, we have assumed errors in DA to be 20 per
cent, independently of redshift. High–quality tSZ and X–ray observations will eventually
allow to bring statistical errors down to this level in the near future. Of course, systematic
errors in tSZ observations, associated for instance to point–source contamination and
CMB signal removal, are different in nature and more difficult to eliminate.

4.4 Conclusions

In this Chapter we have applied the method to calibrate the cosmic distance scale from
the combination of X–ray and Sunyaev–Zeldovich (tSZ) observations to an extended set
of hydrodynamical simulations of galaxy clusters. The simulations have been performed
with the GADGET2 code, for a flat ΛCDM model with Ωm = 0.3, h = 0.7 and σ8 = 0.8,
and include the effect of cooling, star formation and supernova feedback. The aim of our
analysis was to understand the possible biases introduced by the assumptions of isothermal
gas and the X–ray temperature as a close proxy to the electron temperature, as usually
done in the analysis of real clusters. Furthermore, the application of this method to a
large set of simulated clusters allows us to quantify the intrinsic scatter associated with
a cluster-by-cluster variation of their shapes.

Our main results can be summarized as follows.

• Neglecting the temperature gradients in the application of the β–model produces a
significant underestimate of the central value of the Comptonization parameter, y0.
In turn, this introduces a severe bias in the estimate of the angular–size distance,
DA.

• Accounting for the presence of the temperature gradients with a polytropic β–model
substantially reduces this bias to a few per cent level. While this result holds when
using either the electron or the spectroscopic–like temperature, using the emission–
weighted temperature gives a ∼ 20 per cent underestimate of DA.

• Cluster-by-cluster variations of the asphericity and of the degree of gas clumpi-
ness cause an intrinsic dispersion of about ∼ 20 per cent in the estimates of DA.
This dispersion significantly increases in case unrelaxed clusters are included in the
analysis.

• The set of simulated clusters is used to generate a mock sample of clusters out to
redshift z = 1.5. By assuming a 20 per cent precision in the estimate of DA for
each cluster, we find that the correct value of H0 is recovered with a statistical error
of 2 km s−1 at 1σ. Furthermore, assuming a prior for the Hubble constant and flat
geometry, we find that also the matter density parameter can be estimated in an
unbiased way with a statistical error of ∆Ωm = 0.05.

It is worth reminding here that our results are based on the analysis of simulated
X–ray and tSZ maps, which are ideal in a number of ways. First of all, they have been
generated by projecting the signal contributed by the gas out to about six virial radii. A
more rigorous approach would require projecting over the cosmological light cone, to prop-
erly account for the fore/background contamination. While projection effects ought to be
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marginal for the X–ray maps, they may substantially affect the tSZ signal (e.g., White
et al., 2002; Dolag et al., 2005). Furthermore, our noiseless maps need to be properly
convolved with the “response function” of both X–ray and tSZ telescopes under realistic
observing conditions. Neglecting the observational noise clearly leads to an underesti-
mate of the uncertainties in the determination of the parameters defining gas density
and temperature profiles. Accounting for such effects would definitely require passing our
ideal maps through suitable tools to simulate X–ray (e.g., Gardini et al., 2004) and tSZ
observations (e.g., Kneissl et al., 2001; Pierpaoli et al., 2005). Finally, the effect of ne-
glecting the departure from isothermality depends on the physical description of the ICM
provided by the simulations. Since simulated clusters have central temperature gradients,
which are steeper than the observed ones, the above effect is probably overestimated.
This demonstrates that a proper use of hydrodynamical simulations to calibrate galaxy
clusters as standard rods also requires a correct description of the physical properties of
the intra–cluster gas.

The results presented in this Chapter have been published in Ameglio et al. (2006).
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Chapter 5

Joint deprojection of
Sunyaev–Zeldovich and X–ray
images

A precise observational characterization of the thermal structure of the intra–cluster
medium (ICM) is of crucial relevance for at least two reasons. On one hand, the ICM
thermodynamics is determined not only by the gravitational accretion of gas into the
dark matter potential wells forming clusters, but also by energy feedback processes (i.e.,
from supernova explosions and active galactic nuclei), which took place during the cos-
mic history of the cluster assembly. On the other hand, a precise characterization of the
temperature structure of clusters is highly relevant to infer the cluster masses, under the
assumption of hydrostatic equilibrium, and, therefore, to calibrate clusters as precision
tools for cosmological applications (e.g., Rosati et al., 2002; Voit, 2005; Borgani, 2006,
for reviews).

The study of the ICM properties has been tackled so far through X–ray observations.
Data from the Chandra and XMM–Newton satellites are providing precise measures of the
temperature and surface brightness profiles for a fairly large number of nearby (z∼< 0.3)
clusters, reaching z ≃ 0.5 for the brightest objects (e.g., Piffaretti et al., 2005; Pratt &
Arnaud, 2005; Vikhlinin et al., 2005; Kotov & Vikhlinin, 2006).

These observations have indeed allowed to trace in detail the mass distribution in
galaxy clusters for the first time. However in the X-rays the accessible dynamic range
is limited by the ρ2

gas dependence of the emissivity which causes measurements of the
temperature profiles to be generally limited to 2–3 core radii, extending out to r500 only
in the most favorable cases. This is not the case for clusters’ studies performed with
the thermal Sunyaev–Zeldovich effect (Sunyaev & Zeldovich 1972, tSZ; see Birkinshaw
1999; Carlstrom et al. 2002 for reviews). Since the tSZ signal has a weaker dependence
on the local gas density, it is in principle better suited to sample the outer cluster’s
regions, which can be accessed by X–ray telescopes only with long exposures and a careful
characterization of the background noise. Clusters are currently observed through their
tSZ signal and tSZ surveys of fairly large area of the sky promise to discover in the next
future a large number of distant clusters out to z∼> 1.

Thanks to the different dependence of the tSZ and X–ray emission on the electron
number density ne, and temperature Te, the combination of these two observations offers
in principle an alternative route to X–ray spectroscopy for the study of the structural
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properties of the ICM. Indeed, while the X–ray emissivity scales as n2
eΛ(T ) (where Λ(T )

is the cooling function), the tSZ signal is proportional to the gas pressure, neTe, integrated
along the line-of-sight. Recovering the temperature structure of galaxy clusters through
the combination of X–ray and tSZ data has several advantages with respect to the more
traditional X–ray spectroscopy. First of all, X–ray surface brightness profiles can be
recovered with a limited number (∼ 103) of photons, while temperature profiles require at
least ten times more counts. Therefore, the combination of X–ray surface brightness and
tSZ data should allow to probe more easily the regimes of low X–ray surface brightness (i.e.
external cluster regions and high–redshift galaxy clusters), which are hardly accessible to
spatially resolved X–ray spectroscopy. Furthermore, fitting X–ray spectra with a single
temperature model is known to provide a temperature estimate which is generally biased
low by the presence of relatively cold clumps embedded in the hot ICM atmosphere
(Mazzotta et al., 2004; Vikhlinin, 2006). On the other hand, combining X–ray and tSZ
does not require any spectral fitting procedure and, therefore, yields a temperature which
is basically mass–weighted.

The combination of X–ray and tSZ observations is currently used to estimate the an-
gular diameter distance of clusters (see Chapter 4) and to recover the gas mass fraction
(e.g., LaRoque et al., 2006). Clearly, performing a spatially–resolved reconstruction of the
thermal structure of the ICM requires the availability of high–resolution tSZ observations
with a sub-arcmin beam size, with a sensitivity of few µK on the beam. Although ob-
servations of this type can not be easily carried out with millimetric and sub–millimetric
telescopes of the present generation, they are certainly within the reach of forthcoming
and planned instruments of the next generation, based both on interferometric arrays and
on single dishes with large bolometer arrays (see Chapter 2).

Combining X–ray and tSZ data to reconstruct the three dimensional gas density and
temperature structure of galaxy clusters is not a new idea and different authors have pro-
posed different approaches. Zaroubi et al. (1998) used a deprojection method, based on
Fourier transforming tSZ, X–ray and lensing images, under the assumption of axial sym-
metry of the cluster. After applying this method to simple analytical cluster models, they
concluded that the combination of the three maps allows one to measure independently
the Hubble constant H0 and the inclination angle. This same method was then applied
by Zaroubi et al. (2001) to cosmological hydrodynamical simulations of galaxy clusters.
They found that this method provides a reliable determination of the cluster baryon frac-
tion, independently of the inclination angle. Reblinsky (2000) applied a method based on
the Richardson–Lucy deconvolution to combined tSZ, X–ray and weak lensing data to a
set of simulated clusters. Doré et al. (2001) used a perturbative approach to describe the
three dimensional structure of the clusters, to combine tSZ and lensing images. In this
way, they were able to predict the resulting X–ray surface brightness. After testing their
method against numerical simulations of clusters, they concluded that the dark matter
and gas distributions can both be recovered quite precisely. Lee & Suto (2004) proposed
a method, based on assuming a polytropic equation of state for gas in hydrostatic equi-
librium, which allowed them to recover the three dimensional profiles of clusters using the
tSZ and the X–ray signals. Puchwein & Bartelmann (2006) applied the same method of
Reblinsky (2000) to deproject X–ray and tSZ maps, so as to recover the gas density and
the temperature structure of clusters, under the assumption of axial symmetry. Cavaliere
& Lapi (2006) applied the combination of tSZ and X–ray observations to recover the ICM
entropy profiles.

As for applications to real clusters, Zhang & Wu (2000) combined X-ray surface bright-
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ness and tSZ data, for a compilation of clusters, to estimate the central temperature,
and found it to be in reasonable agreement with the X–ray spectroscopic determination.
Pointecouteau et al. (2002) used ROSAT–HRI imaging data of a relatively distant cluster
(z ≃ 0.42) with tSZ observations to infer the global temperature of the system.

De Filippis et al. (2005) combined X–ray and tSZ data to constrain the intrinsic
shapes of a set of 25 clusters. By applying a deprojection method based on assuming the
β–model (Cavaliere & Fusco-Femiano, 1976), they confirmed a marginal preference for the
clusters to be aligned along the line-of-sight, thus concluding that X–ray selection may
be affected by an orientation bias. Sereno (2007) analyzed the potentiality of combining
tSZ, X–ray and lensing data to constrain the 3D structure of the clusters. He found that
these data are enough to determine the elongation along the line of sight (together with
the distance), without however fully constraining shape and orientation.

Some of the detailed methods applied to numerical cluster models account for the
presence of a realistic noise in the tSZ and X–ray maps. However, they generally do
not present any detailed assessment of how this noise determines the uncertainties in the
deprojected profiles, which ultimately characterize the ICM thermodynamics. Having a
good control on the errors is especially crucial in any deprojection technique, since errors
at a given projected separation affect the deprojected signal in the inner regions, thereby
introducing a non–negligible covariance in the reconstruction of the three-dimensional
profiles.

In this Chapter we discuss a method to recover the three–dimensional temperature
and gas density profiles from the joint deprojection of X–ray surface brightness and spa-
tially resolved tSZ data, testing its performance against idealized spherical clusters and
full cosmological hydrodynamical simulations. This method is based on the assumption of
spherical symmetry, but do not assume any specific model for the gas density and tempera-
ture profiles. We will describe two different implementations. The first one is analogous to
that already applied to deproject spectroscopic X–ray data (e.g., Kriss et al., 1983) and is
based on assuming a onion–like structure of the cluster, in which projected data of X–ray
and tSZ “fluxes” are used to recover gas density and temperature in the external layers and
then propagated to the internal layers in an iterative way. The second implementation is
based instead on a multi–parametric fitting procedure, in which the fitting parameters are
the values of gas density and temperature within different three–dimensional radial bins.
The values of these parameters are then obtained through a Monte Carlo Markov Chain
maximum likelihood fitting by comparing the resulting projected X–ray and tSZ profiles
to those measured from the maps. As we shall discuss in detail, this second method natu-
rally provides the error correlation matrix, which fully accounts for the covariance between
error estimates at different radii and among different (i.e. gas density and temperature)
profiles. The quality of the X–ray data required by our methods are basically already
available with the current generation of X–ray telescopes. As for the tSZ data, exploiting
the full potentiality of the deprojection requires spatially resolved data. For illustrative
purposes, we will assume the forecast observing conditions and sensitivity of the CCAT
(Sebring et al., 2006, see also http://www.submm.caltech.edu/∼sradford/ccat/doc/2006-
01-ccat-feasibility.pdf), although our computations can be easily repeated for other tele-
scopes.

The plan of this Chapter is as follows. In Section 5.1 we describe the two implemen-
tations of the deprojection method, while we describe in Section 5.2 their application
on a spherical polytropic β–model. Section 5.3 presents the results of the analysis on
the hydrodynamical simulations of clusters. The main conclusions of our analysis are
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Figure 5.1. Illustration of the onion–skin model adopted for the geometrical deprojection (see

text in Sect. 2.1; adapted from McLaughlin 1999).

summarized in Section 5.4.

5.1 The methods of deprojection

5.1.1 The geometrical deprojection technique

The first method that we apply to recover the three–dimensional profiles of temperature
and gas density is based on a geometrical technique originally introduced by Kriss et al.
(1983), and subsequently adopted (e.g., Buote, 2000; Ettori et al., 2002; Morandi et al.,
2007) to deproject X–ray images and spectra of galaxy clusters. This method of geo-
metrical deprojection is fully non–parametric and allows to reconstruct the 3-dimensional
profile of a given quantity from its 2-dimensional observed projection, under the assump-
tion of spherical symmetry.

Following Kriss et al. (1983), the cluster is assumed to have a onion–like structure
(see figure 5.1), with N concentric spherical shells, each characterized by uniform gas
density and temperature within it. Therefore, the cluster image in projection is divided
into rings, which are generally assumed to have the same radii of the 3D spherical shells.
Let us define ǫi as the signal to be recovered from the deprojection method within the
i-th shell. In our analysis ǫi will be proportional to either neTe for the tSZ signal, or to
n2

eΛ(T ) for the X–ray emissivity. In this way, the contribution of the i-th shell to the
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surface brightness1 in the ring j of the image will be given by si,j = ǫi · Vi,j/Aj , where
the matrix Vi,j has as entries the values of the volume of the shell i which is projected on
the ring j, whose area is Aj. By definition, si,j = 0 for j > i. Accordingly, the surface
brightness S′

j in the ring j can be obtained by summing up the contributions from all the
shells,

S′
j =

1

Aj

N
∑

i=j

si,j =

N
∑

i=j

ǫi · Vi,j , (5.1)

where the sums extend over the N radial bins. The deprojection amounts to invert the
above equation, i.e. to recover the values of ǫi from the observed projected signal S′

j. We
refer to figure 5.1 to illustrate how this deprojection is performed in practice. Let the
shell i, limited by ri and ri+1, be the outermost one. Then, from the surface brightness
S′

i in the ring i (limited by Ri and Ri+1), one can directly compute the emissivity of the
shell i simply by knowing the volume of the region (a) and the area of the ring. In this
case, the sum in eq. (5.1) has only the term j = i = N . The adjacent inner ring, having
index i− 1 and limited by Ri−1 and Ri, takes instead a contribution from both the i− 1
and i shells. The former is computed by multiplying the emissivity of that shell by the
volume of the region (b). After subtracting it, the only remaining contribution is that of
the sell i−1 from which the emissivity ǫi−1 is computed. This procedure is then repeated
from ring to ring down to the centre of the cluster.

For this simple scheme to be applied, one requires to have images extended out to the
true external edge of the cluster, i.e. out to the radius where the surface brightness goes
virtually to zero. Clearly, this situation is never attained in practical applications for at
least two reasons. First, clusters are always embedded in a large–scale cosmic web, which
makes it difficult to define a sharp outer boundary. Second, and more important, both
instrumental and cosmic backgrounds often dominate the genuine signal from the cluster
well before its virial boundary is reached.

To overcome this problem, it is then necessary to take into account the emission from
the gas, which extends outside the N -th shell. This emission does not have a corresponding
ring in the image but can give a non–negligible contribution to the surface brightness in
all rings. To account for this contribution, we follow the approach of McLaughlin (1999),
who modeled the volume emission from the gas beyond the last observable annulus as a
power law, ǫ(r) ∝ r−α (we refer to their Appendix A for a more detailed description).
The idea behind this method is that the exact contribution to each ring from the external
part can be calculated by integrating the volume emission ǫ(r). Then, the normalization
of the power law shape of ǫ(r) is fixed by the requirement of matching the total surface
brightness of the last ring. This correction can be expressed as an additional term to eq.
(5.1), which is proportional to the surface brightness of the last ring:

Sj = S′
j + fj · SN , (5.2)

Here, fj is a geometrical factor which is uniquely specified by the values of the limiting
radii of the j-th ring and by the exponent α. Eq. (5.2) must be actually interpreted as
a set of 2N equations, which corresponds to the separate deprojection of the tSZ and
of the X–ray signal, each performed for N radial bins. The geometrical deprojection
is then performed by inverting each set of N equations, starting from the outermost

1For the sake of clarity, we indicate here with surface brightness the projected quantity, which can be
both a genuine X–ray surface brightness and the tSZ signal.
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bin and proceeding inward. This procedure provides the radial profiles of neTe and of
n2

eΛ(T ), whose combination finally gives the 3D profiles of electron number density and
of temperature. We emphasize that the temperature so obtained is the actual electron
temperature and not the deprojected spectroscopic temperature, usually obtained from
the fitting of X–ray spectra.

Given the iterative nature of this procedure, the uncertainty associated to each ring
propagates not only to the corresponding 3D shell, but also to all the inner shells. For
this reason, it is very difficult with this method to have a rigorous derivation of the
statistical uncertainties associated to the deprojected profiles. This is particularly true
for the X–ray profiles, that also involve a derivative of the cooling function with respect
to the temperature. The commonly adopted solution is based on performing MonteCarlo
simulations, over which to compute the errors (e.g. Ettori et al., 2002).

Furthermore, errors associated to different radial bins are not independent. This is
due to the fact that the projected signal in a given ring is contributed by several shells.
The resulting covariance in the signals recovered in different shells is not provided by this
deprojection method. This is a rather important point on which we will come back in
Section 5.3.

5.1.2 The maximum likelihood deprojection

This technique is based on performing the deprojection by maximizing a likelihood func-
tion, which is computed by comparing the observed tSZ and X–ray profiles with the ones
obtained by projecting the onion–skin model in the plane of the sky. This approach offers
more than one advantage with respect to the geometrical deprojection, described in the
previous section. First, the deprojection of both X–ray and tSZ profiles is performed
simultaneously, directly obtaining the whole density and temperature profiles and their
errors. Second, besides the variance, it is also possible to compute the correlation matrix
for all parameters, without any extra computational cost. Finally, it is possible to in-
troduce in the likelihood extra terms in order to improve the accuracy and robustness of
the technique. As we shall describe in the following, we adopt a regularization technique,
which is based on imposing a suitable constraint to the likelihood function, to smooth out
spurious oscillations in the recovered profiles induced by the covariance in the parameter
estimate.

The definition of the likelihood is the most important part of the whole procedure.
We define a joint likelihood for the tSZ profile, LtSZ , and for the X–ray surface brightness
profile, LXray, also including a term associated to the regularization constraint, Lλ

reg.
Since these three terms are independent, the total likelihood is given by the product of
the individual ones:

L ≡ LtSZ · LXray · Lλ
reg. (5.3)

For both the tSZ and the X–ray profiles, the take the Gaussian form for the likelihood,

ln(LtSZ,X−ray) = −1

2
χ2 = −1

2

∑

i

(

Oi − Mi

σi

)2

, (5.4)

where Oi are the values of the profiles in the i-th bin, measured from the maps, while
Mi(x) are the model–predicted profile values, as obtained for the set x of parameters.
Finally, σi is the uncertainty on the measured values Oi.

While the Gaussian expression is adequate for the tSZ signal, its application to the
X–ray signal requires the number of photons sampling the surface brightness map in each
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radial shell to be large enough to neglect the Poisson noise. As we shall discuss in the
following, even in the outermost rings, we always have at least 20 photons in the “noisy”
X–ray maps.

For the regularization constraint, we adopt the Philips-Towmey regularization method
(Bouchet, 1995, and references therein). This method has been already used also by
Croston et al. (2006) to deproject X–ray imaging and spectral data. The method consists
of minimizing the sum of the squares of the kth-order derivatives around each data-point,
so as to smooth out oscillations in the profiles. Here we choose to minimize the second–
order derivative, since we aim to eliminate fluctuations in the profiles, but not the overall
gradient. As we shall discuss in the following, such oscillations are due either to genuine
substructures or to noise which propagates from adjacent bins in the deprojection. The
local derivative of the function xi at the i-th radial interval is computed by fitting its value
and the values at the adjacent points, xi−1 and xi+1, with a second order polynomial.
Let ri be the value of the equally–spaced cluster–centric distances, at which the profiles
are sampled, and ∆r the spacing. Then, the regularization likelihood can be cast in the
form

ln(Lλ
reg) = −1

2
λ′

N−1
∑

i=3

(

2fi − fi−1 − fi+1

∆2
r

)2

≡

≡ −λ

N−1
∑

i=3

(2fi − fi−1 − fi+1)
2 (5.5)

The quantity between parenthesis in the first line of the above equation is the exact value
of the local second–order derivative around ri. All the constant factors are included in the
coefficient λ, which is called the regularity parameter. The choice of its value is determined
by the compromise one wants to achieve between the fidelity to the data (low λ) and the
regularity of the solution (high λ). A small λ value will give an inefficient regularization,
while a too high λ will force the profile to a straight line, especially if the signal-to-noise
ratio, S/N, is low. We apply the regularization constraint only to the temperature profile,
which is that generally showing large oscillations, while the density profile has always a
rather smooth shape. The sum in eq. (5.5) starts from i = 3 since we prefer to exclude
the innermost point from the regularization procedure.

With this approach, the values of the 3D gas density and temperature profiles are
computed at N = 15 radii each. Therefore, the total number of parameters to be deter-
mined with the maximum likelihood approach is 30. In order to optimize the sampling
of such a large parameter space, we adopt a Markov Chain Monte Carlo (MCMC) fitting
technique (Neal, 1993; Gilks et al., 1996; MacKay, 1996).

What the MCMC computes is the (marginalized) distribution of each parameter of a
set, xi (i.e. the values of density and temperature into each bin), for which the global
(posterior) probability P (x), which is proportional to the likelihood function, is known
at any point in the parameter space. In the case of an high number of parameters or of a
particularly complex P (x), this is quite difficult to be done analytically, or simply compu-
tationally very expensive. Instead, the MCMC performs the exploration of the parameter
space with a limited computational cost, thanks to an iterative Monte Carlo approach,
by sampling the P (x) distribution. At each iteration, new values of the parameters are
drawn from a symmetric proposal distribution, that in our case is a Gaussian,

q(xi, x̂i) ∝ e−(xi−x̂i)
2/2α2

i . (5.6)
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Here xi and x̂i are the entries of two vectors, having 30 components each, which represent
the updated and the old values of the fitting parameters, respectively. The parameter αi

determines the possible range for xi given x̂ .

After the likelihood function is computed for a new set of parameters x, these new
values are accepted or rejected with a probability (A) given by the so–called Metropolis
criterion (Metropolis et al., 1953):

A(x, x̂) = min

{

1,
P (x)

P (x̂)

}

, (5.7)

where P (x) is the distribution sampled by the MCMC 2.

The width of the proposal distribution appearing in eq. (5.6), αi, determines the
behavior of the chain: a small value of αi increases the acceptance rate since the new
proposed value is close to the old one, while a high value provides a faster exploration
of the parameter space. Our criterion to choose the values of αi is that the resulting
acceptance rate, given by eq. (5.7), is around 10 per cent.

Each parameter is allowed to vary within a finite interval, in order to avoid that the
MCMC finds secondary maxima in unphysical regions of the parameter space. As for gas
density, we allow it to vary within a large range, 0.1 < ne < 10−6 cm−3. Since density
is mostly constrained by the X–ray signal, which is proportional to n2

e, it is always fairly
well constrained and the above large interval of variation does not create convergence
problems in any of our objects. The upper and lower limits allowed for the temperature
are 25 keV (never reached along the chain) and 0.5 keV. Even though none of our clusters
reach such low temperatures within the virial radius, the exploration of the parameter
space during the Markov Chain run could reach such a low temperature regime. When
this happens, the rapid drop of the cooling function Λ(T ) below 0.5 keV generates a
maximum in the likelihood probability distribution, with unphysically low temperature
and very high density.

The iterative procedure described above is repeated until a suitable number of new
sets of parameters are accepted in the chain (typically ∼> 5 × 104). In this condition,
the frequency of the occurrence in the chain of the i-th parameter xi approaches its
true probability distribution, P (xi). Note that each parameter distribution is already
marginalized over the distributions of all the other parameters.

We perform the statistical analysis of the chain by using the code getdist of the COS-
MOMC package (Lewis & Bridle, 2002). In addition to a complete statistical analysis of
the chain, the code performs a series of convergence tests: the Gelman & Rubin R statis-
tics (Gelman & Rubin, 1992), the Raftery & Lewis test (Raftery, 2003) and a split–test
(which essentially consists in splitting the chain into 2, 3 or 4 parts and comparing the
difference in the parameter quantiles). We check the convergence of our result against all
these three tests.

2Hastings (1970) has generalized this treatment to non–symmetric proposal distributions, by adding a
factor in eq. (5.7) which takes into account the proposal distribution q(x, x̂):

A(x, x̂) = min



1,
P (x)

P (x̂)

q(x, x̂)

q(x̂, x)

ff

, (5.8)

This is called the Metropolis–Hastings criterion.
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Figure 5.2. Results of the geometrical deprojection of the analytical model: density profile

(left panel), temperature profile (right panel). The dashed line represents the true profile. The

circles (triangles) connected by a solid line represent the reconstructed profiles without (with) the

inclusion of the noise. Errorbars represent 1σ deviations over 1000 Monte Carlo resamplings over

the data (see text for details, Section 5.2.1)

5.2 Application to an idealized cluster model

In order to investigate the presence of possible systematics in the geometrical deprojection
technique, we carry out a test on an ideal cluster model. We construct this model cluster
by assuming the β–model for the gas density profile, with an effective polytropic equation
of state to define the temperature profile:

ne = ne0

(

1 +
r2

r2
c

)−3β/2

T = T0

(

ne

ne0

)γ−1

= T0

(

1 +
r2

r2
c

)−3β(γ−1)/2

(5.9)

The values of the model parameters are fixed as follows: β = 0.8, γ = 1.2 for the effective
polytropic index, ne0 = 3 · 10−3 cm−3 for central electron number density, T0 = 4 keV
for the central temperature, rc = 200 kpc for the core radius. The “virial” radius, which
represents here the largest cluster-centric distance out to which the profiles are followed,
is fixed at rvir = 2 Mpc. We assume the cluster to be placed at redshift z = 0.1.

We create tSZ and X–ray images of this model in X–ray and tSZ. The maps are
composed by a grid with 512x512 pixels. The physical dimension of the pixel is ∼ 16
kpc, which corresponds to an angular scale of ∼ 4 arcsec at the above redshift. In
realizing the map of X–ray surface brightness, we adopt for the cooling function the pure
bremsstrahlung expression Λ(T ) = Λ0(T/T0)

0.5 where Λ0 = 5·10−23 erg/s cm3. We prefer
this simple formula since at this stage our main interest is to investigate the systematics
of the deprojection itself, rather than the uncertainties introduced by the dependence of
the X–ray emissivity on the temperature (which we expect anyway to be quite small).
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We adopt the same binning strategy for both the ideal cluster and for the simulated
objects, that we shall describe in the next Section. The first bin is taken from r = 0
to r = 0.05rvir which always corresponds to ∼> 100 kpc in our set of simulated clusters.
Then, we compute the profile in 10 (15) bins out to R500 (Rvir) which are equally spaced
in logarithm. This choice represents a good compromise between the needs of accurately
resolving the profile and of having an adequate signal-to-noise (S/N ∼> 5) in each bin.
We point out that a proper binning criterion is important in order to get an unbiased
reconstruction of the profiles. One should keep in mind that the spherical shells are
assumed to have homogeneous gas density and temperature structures, thus neglecting
any internal radial gradient. On the other hand, the portion of each shell, which is
projected on the corresponding ring in the image, is located at a larger radial distance
from the center than the portion of the same shell which is projected into the inner rings.
Therefore, if the bin width is comparable to or larger than the scale length of the internal
radial gradient of the shell, the emissivity contributed to the correspondent ring is lower
than expected from a homogeneous gas density, while it is larger for all the inner rings.
As a consequence, the emissivity of the shell is underestimated while that of all the inner
shells is overestimated in order to correctly reproduce the cluster image.

In order to check for the presence of such systematics, we first apply the deprojection
technique in the case of an ideal observation, free of any noise. The reconstructed density
and temperature profiles are shown in figure 5.2. The reconstruction in this extremely
idealized case is excellent, with very small or no deviations in all bins. Larger deviations
are in the outermost bins and are related to the subtraction of the contribution of the
fore–background contaminations. This contamination is due to the fact that the β–model
used to produce our maps ideally extends out to infinity. Nevertheless, all deviations are
smaller than a few percent and are negligible with respect to any observational noise.
The results obtained in this test case show that taking equally log-spaced bins is in fact
a good choice.

5.2.1 Geometrical deprojection of the noisy maps

The case of noiseless observations discussed in the previous section is highly idealized. The
impact of including a realistic noise is instead very important and cannot be neglected.
The recipe to add noise to the maps, that we describe here, will also be used in the study
of the simulated clusters, discussed in Section 5.3.

As already mentioned, recovering detailed temperature profiles from the combination
of X–ray imaging and tSZ data requires both of them to have an adequate spatial reso-
lution. While this is certainly the case for the present generation of X–ray satellites, the
combination of good sensitivity and spatial resolution for tSZ observations should await
the next generation of sub-millimetric telescopes.

For the purpose of our analysis, we model the noise in the tSZ maps by using as a
reference the performances expected for the planned Cornell–Caltech Atacama Telescope
(CCAT), which is expected to start operating at the beginning of the next decade (Sebring
et al., 2006). The telescope will be a single–dish with 25 m diameter. The required field–
of–view is of about 10× 10 arcmin2, with the goal of covering a four times larger area, so
as to cover one entire rich cluster down to a relatively low redshift. The best band for tSZ
observations will be centered on 150 GHz. At this frequency CCAT is expected to have
a Gaussian beam of 0.44 arcmin FWHM. The first step of noise setup is to convolve the
maps with this beam. Then we add a Gaussian noise of 3µK/beam. This level of noise
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should be reached with about 6 hours of exposure with CCAT. In the present study, we
neglect in the tSZ maps any contamination, in particular we do not consider the presence
of unresolved radio point sources. A detailed analysis of the contaminations in the tSZ
signal has been provided by Knox et al. (2004) and by Aghanim et al. (2004).

As for X–ray observations, the Chandra satellite is currently providing imaging of
superb quality, with a sub–arcsec resolution on axis. A proper simulation of X–ray obser-
vations should require generating spectra for each pixel, to be convolved with the response
function of a given instrument. However, in order to apply our reconstruction method we
only need to generate X-ray surface brightness maps with a given number of events (pho-
tons), regardless of their energy. For this purpose we simulate the X–ray photon counts
by using a Monte Carlo sampling of the surface brightness map. We fix to N = 104 the
total number of photons within the virial radius of the cluster, which is quite typical for
medium–deep observations of relatively nearby clusters. Each photon event is generated
in a particular pixel i, with probability

Pi =
si

∑

j sj
, (5.10)

where si is the surface brightness of the pixel and the sum is extended to all the pixels
of the map. The number of expected counts into each pixel will be given by a Poisson
probability distribution with mean ni = NPi. The conversion between counts and surface
brightness is then given by Σ =

∑

i si/N , so that the total flux in the map is conserved.
Clearly, this method of introducing noise in the X–ray maps only takes into account

the statistical errors associated to finite exposures. However, it neglects the effects of any
systematics (e.g., contribution of the instrumental and cosmic background, etc.) which
should be included in a more realistic observational setup. A comprehensive description of
the instrumental effects on the recovery of X–ray observables, calibrated on hydrodynam-
ical simulations, has been provided by Gardini et al. (2004) (see also Rasia et al., 2006a).
Probably the most serious limitation in our approach is that we assume the absence of
any background or, equivalently, that the background can be characterized and removed
with arbitrary accuracy.

In figure 5.3 we show the tSZ and X–ray images of the idealized cluster, once noise
is added. In figure 5.2 we show the results of the deprojection of the noisy maps of
the idealized cluster, for both the density and the temperature profiles. In order to
estimate the errors in the deprojected profiles, we perform a MonteCarlo resampling of
the projected X–ray and tSZ profiles: the value of the profile within each radial ring is
randomly scattered according to a Gaussian distribution, whose width is given by the error
associated to the noise introduced in the map. The 1σ errors in the deprojected profiles
is then obtained as the scatter within a set of 1000 deprojections of the MonteCarlo–
resampled tSZ and X–ray profiles.

The density is the best determined quantity, with uncertainty lower than 10 per cent.
This is quite expected, owing to the sensitive dependence on gas density of both the
X–ray signal (∝ n2

e) and of the tSZ one (∝ ne). The temperature has instead higher
errors, of about 20–30 per cent. This is due to the fact that the X–ray signal has a
weaker dependence on the temperature (only contained in the cooling function Λ(T )).
For this reason, the determination of the temperature profile, independent of any X–ray
spectroscopic analysis, is strictly related to the possibility of having high–quality tSZ
data.

The introduction of noise generates fluctuations in the tSZ and X–ray profiles which
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Figure 5.3. The tSZ (upper panel) and the X–ray (lower panel) maps of the ideal cluster. The

side of the map corresponds to 2Rvir = 4 Mpc. Note that the scale is linear in the tSZ map and

logarithmic in the X–ray one.
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Figure 5.4. Results of the maximum–likelihood deprojection on the density profile (left panel)

and temperature profile (right panel) for the idealized cluster. In the upper part of each panel

we show the correct profile (dashed curve) and the reconstructed profile with and without the

regularization constraint (circles and triangles, respectively). In the lower part we show the

fractional deviation of the recovered profiles from the true one.

translate into variations of the recovered density and temperature. Looking at the bottom
panels of figure 5.2, positive fluctuations in the density correspond to negative fluctuations
in the temperature (and viceversa). Furthermore, any fluctuation in a given direction
in one radial bin generally corresponds to a fluctuation in the opposite direction in an
adjacent bin, within the same profile. This pattern in the fluctuations witnesses the
presence of a significant covariance among nearby bins in the same profile and between
the values of density and temperature recovered within the same radial bin. As for the
covariance between neighbor bins, it is due to the onion–skin structure assumed in the
deprojection: every time that a quantity is over(under)estimated in a radial bin, the
deprojection forces the same quantity to be under(over)estimated in the adjacent inner
bin, so as to generate the correct projected profile. As for the covariance between different
profiles, it is mostly induced by the tSZ signal, which has the same dependence on both
ne and T . Although such oscillations are present for both density and temperature, they
are smaller for the former, due to its faster decrease with radius.

5.2.2 Maximum likelihood deprojection of the noisy maps

We verified that using the maximum–likelihood technique, as described in Section 5.1.2,
generally produces very similar results to those of the geometrical deprojection, at least
when the regularization term, Lλ

reg is not included in the analysis. The results of this
deprojection method on the polytropic β-model are shown in figure 5.4, where we also
show the effect of introducing the regularization term. The effect of the regularization
constraint is evident: most of the fluctuations, which are due to the degeneracies between
fitting parameters, disappear and the deprojected profiles become much more regular, and
with smaller errorbars in the profiles, while the accuracy of the reconstruction remains
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Figure 5.5. The correlation matrix of density and temperature without the regularization

constraint: density-density (left panel), temperature-temperature (central panel) and density-

temperature (right panel). White pixels correspond to the presence of strong positive correlation,

while black pixels are for strong anti–correlation.

Figure 5.6. The correlation matrix of density and temperature while using a regularization con-

straint: density-density (left panel), temperature-temperature (central panel) and density tem-

perature (right panel). The color-coding of the pixels is the same as in figure 5.5.

essentially unbiased.

In order to study in detail the presence of correlations among the fitting parameters,
we compute the correlation matrix, which is defined as Cij = σij/σiσj , where σij is the
covariance between the xi and the xj fitting parameters, while σ2

i is the variance for the
xi parameter. The covariance matrix is computed along the Markov Chain. Therefore,
Cij is in our case a matrix with 30×30 entries. In figures 5.5 and 5.6 we plot the entries of
the correlation matrix for the density–density (DD), temperature–temperature (TT) and
density–temperature (DT) “blocks”, before and after introducing the regularization term
in the likelihood function, respectively. By definition, the variance terms in the diagonal of
the DD and TT matrices are characterized by the maximum correlation. On the contrary,
the diagonal of the DT matrix has the maximum anticorrelation, thus demonstrating
that any positive fluctuation in the recovered profile of one quantity corresponds to a
negative fluctuation of the other quantity at the same radius. We also note that the
next-to-diagonal terms in the DD and TT blocks have a degree on anticorrelation, thus
explaining the fluctuating profile shown in figures 5.2 and 5.4. When the regularization is
introduced, the correlations between density or temperature of adjacent bins is efficiently
suppressed.



5.3. APPLICATION TO SIMULATED CLUSTERS 79

Cluster Te Mvir Rvir

keV 1014M⊙ Mpc

C1 2.5 4.0 2.1
C2 4.3 10.1 2.6
C3 5.5 26.6 3.1
C4 7.0 30.5 3.3

Table 5.1. Characteristics of the simulated clusters, for which the detail of the analysis are

presented. Col. 1: electron (mass–weighted) temperature; Col. 3: virial mass; Col. 4: virial

radius.

5.3 Application to simulated clusters

The sample of clusters analyzed here is composed by a subset of 14 simulated objects
extracted from the sample describes in Section 3.3, which have virial mass Mvir∼> 4 ×
1014M⊙ and spectroscopic temperature Tsl∼> 3 keV.

The substructures are well known to represent an important source of bias in the
deprojection, especially of the X–ray signal, which is highly sensitive to gas clumping.
In order to remove this contaminating signal, we follow the same method that is often
adopted in the analysis of observational data. We first identify the detectable clumps by
visual inspection of the X–ray maps. The corresponding regions are then masked out both
in the X–ray and in the tSZ maps. The masked regions are excluded from the computation
of the signals to be deprojected. This leads to an increase of the statistical uncertainties
in those rings which have a significant overlap with the masked regions. Clearly, due to
the finite photon statistics in the X–ray maps, small clumps may fall below the detection
threshold, while their presence may still affect the emissivity.

In the following, we will show detailed results for a subset of 4 clusters. The basic
characteristics of these four selected clusters are reported in Table 5.1. The first three of
them are extracted from the cosmological hydrodynamical simulation, while C4 is one of
the massive clusters simulated at higher resolution. C2, C3 and C4 are typical examples
of clusters at low, intermediate and high temperature, while C1 is an interesting case
to understand the effect of fore–background contaminations. We show in figure 5.7 the
X–ray surface brightness and Compton–y maps for these four clusters. All the maps are
generated by placing the cluster at redshift z = 0.1, so that the maps, which extend out
to rvir, have an angular size ranging from about 9 arcmin for C1 to 14 arcmin for C4.

5.3.1 tSZ and X–ray maps

Around each cluster we extract a spherical region extending out to 6 Rvir. Following
Diaferio et al. (2005), we create maps of the relevant quantities along three orthogonal
directions, extending out to about 2 Rvir from the cluster center, by using a regular
512 × 512 grid.

A number of different analyses, based on a joint deprojections of SZ and X–ray cluster
maps under the assumption of axial symmetry, indicate that the X–ray selection tends to
favor objects which are elongated along the line-of-sight (e.g., De Filippis et al., 2005,
and references therein). In order to control the effect of this selection bias, we decided
to choose the axes of projection to be aligned with the principal axes of inertia of the
cluster. This will allow us to quantify the difference in the reconstructed profiles when
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Figure 5.7. Maps of the X–ray surface brightness (left panel) and of the Comptonization param-

eter (right panel) for the C1 to C4 simulated clusters (from top to bottom). Each map extends

out to Rvir . Noise is added according to the recipe described in Section 3.1. The circles mark the

regions which have been masked, due to the presence of detected substructures.
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Figure 5.8. Application of the regularized maximum likelihood deprojection on the cluster C1,

out to Rvir . The tree solid lines connecting dots with errorbars represent the reconstructed

profile, for three orthogonal projection directions: along the x (squares), the y (triangles) and the

z (circles) axes. Errorbars correspond to the asymmetric 68 per cent confidence levels, computed

from the distribution of values taken by the likelihood function along the Markov Chain. The

dashed line represents the true 3-dimensional profile. The dotted line in the right panel shows

the profile of the spectroscopic–like temperature. In the bottom panels, we plot the fractional

deviation of the reconstructed profiles from the true electron temperature.

Figure 5.9. The same as in figure 5.8, but for the C2 cluster.
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Figure 5.10. The same as in figure 5.8, but for the C3 cluster.

Figure 5.11. The same as in figure 5.8, but for the C4 cluster.
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the projection direction is that of maximum cluster elongation.

To derive these axes, we diagonalize the inertia tensor, which is given by

Iij =

N
∑

p=1

(rirj)ρ
2
p (5.11)

where i, j = 0, 1, 2 are the coordinate axes, ri is the i-th coordinate of the particle p with
density ρp and the sum is extended over all the gas particles. We weight each particle by
ρ2

p so as to mimic the elongation in the X–ray emissivity.

The eigenvectors of the I tensor provide the principal axes of the best–fitting ellipsoid.
The semi–axes ai of this ellipsoid are proportional to square root of the corresponding
eigenvalues ai ∝

√
λi (e.g. Plionis et al., 1991). We choose the direction of projection z to

be that corresponding to the largest semi–axis (i.e. the maximum elongation), while the
y and x directions correspond to the medium and to the smallest semi–axes, respectively.

Noise is finally added as described in Section 5.2.1. We fix the total number of photons
in the virial radius to 104 also for simulated clusters. For the tSZ map, we adopt a noise
level of 10 µK/beam for the objects having spectroscopic temperature Tsl > 4 K and 3
µK/beam for those having 3 K < Tsl < 4 K.

5.3.2 Results

Having tested the reliability of the deprojection method, with the regularization of the
likelihood, we apply now this technique to the more realistic case of hydrodynamical
simulations. In this case, a number of effects, such as deviations from spherical symmetry,
presence of substructures and presence of fore/background tSZ contaminating structures,
are expected to degrade the capability of the deprojection to recover the three-dimensional
profiles.

We show in detail the results on the density and temperature deprojection the selected
subset of four clusters presented in Table 5.1 while the whole set of 14 clusters will be
used to assess on a statistical basis the efficiency with which the total gas mass can be
recovered.

The C2 and C4 objects are rather typical examples of our set of clusters. They are
fairly relaxed and with a modest amount of substructures. As for the presence of substruc-
tures, they are well known to represent an important source of bias in the deprojection,
especially of the X–ray signal, which is highly sensitive to gas clumping. In order to
remove this contaminating signal, we follow the same method that is often adopted in
the analysis of observational data. We first identify the detectable clumps by visual in-
spection of the X–ray maps. The corresponding regions are then masked out both in the
X–ray and in the tSZ maps. The masked regions are excluded from the computation of
the signals to be deprojected. This leads to an increase of the statistical uncertainties
in those rings which have a significant overlap with the masked regions. Clearly, due to
the finite photon statistics in the X–ray maps, small clumps may fall below the detection
threshold, while their presence may still affect the emissivity.

The recovered density and temperature profiles of C2 and C4 are shown in figures
5.9 and 5.11. Once all the detectable clumps are masked out the reconstruction of the
density profile is generally good, but with a systematic overestimate of ∼5 per cent, that
we attribute to a residual small–scale gas clumping. Although this effect is rather small,
its presence highlights the need to have a sufficient photon–count statistics to identify
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gas inhomogeneities and remove their contribution in the deprojection procedure. The
slight density overestimate corresponds, as expected, to a small underestimate of the
temperature, which is forced by the requirement of reproducing the tSZ signal, y ∝ neTe.
For these two objects we also note that there are rather small differences in the 3D profiles
recovered from three orthogonal projection directions, thus indicating that they are almost
spherical and without significant substructures along the different projection directions.
Errorbars are always of the order of a few percent, in both density and temperature. We
stress that these very small errorbars, especially in temperature, are partly a consequence
of the regularization constraint.

As for the C3 cluster, we note that it has larger substructures which will have a
stronger impact on the recovered profiles. Even after masking all the detectable sub-
structures, we still have a number of unresolved clumps. As expected, in this case the
density profile (see figure 5.10) is overestimated by a larger factor, ∼ 10 per cent, with a
corresponding more significant underestimate of the temperature. The deviations of the
deprojected profiles in the outer parts are also larger. This is due to stronger contamina-
tions from the fore/background structures, which are both placed at the outskirts of the
cluster and along the projection direction, in the cosmic web surrounding the cluster. In
fact, we remind that both tSZ and X–ray maps are produced by projecting a region of 6
Rvir in front and in the back of the cluster center.

In this respect, the C1 cluster is particularly interesting. Along the x-axis projection
there is a merging groups along the same line of sight, at a distance of ∼ 1.2Rvir from
the centre of the main cluster. In figure 5.12 we show the projected mass surface density
of the gas along the three projection directions, after removing the mass of the main
cluster within Rvir. While the residual mass surface density is quite small along the x
and y directions, a presence of a gas clump are shows up in the z projection. While
this structure provides a rather small contribution to the X–ray signal, its gas pressure is
comparable to that of the main cluster, thereby significantly contaminating the tSZ effect
signal. As a consequence, the density profile (see figure 5.8) is essentially unaffected, while
the temperature is clearly boosted by ∼ 20 per cent with respect to that obtained from
the other two projections. Although this is a quite peculiar case, in which the secondary
structure is relatively large and aligned with the main cluster along the line of sight, it
illustrates the role of projection contamination from unidentified structures in recovering
the 3D thermal structure of the ICM.

We note in figures 5.8–5.11 that the density profiles recovered from the projection of
maximum elongation are overestimated at small radii, while they are underestimated in
the outskirts. In order to quantify this effect, we show in the left panel of figure 5.13
the ratio between the true and the reconstructed density profiles, after averaging over the
sample of simulated clusters. By averaging over all the projection directions, the density
is generally overestimated by about 5 per cent at all cluster radii. This result is confirmed
also by analyses performed on synthetic X–ray observations of simulated clusters (Rasia
et al., 2006a; Nagai et al., 2007). On the other hand, the density profile reconstructed
from the projection along the z axis is confirmed to be significantly larger than along
the other directions in the very inner part, with an inversion at r∼> 0.2rvir. Indeed, the
elongation causes the objects to appear more compact in the X–ray maps, which drive
the density reconstruction. This boosts the deprojected central density, while depletes it
in the outskirts.

As shown in the right panel of figure5.13, the temperature is generally underestimated
by ∼< 10 per cent out to ≃ 0.7rvir . At larger radii this underestimate increases, reaching
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Figure 5.12. Projected surface gas mass density of the C1 cluster along the z (top left), y (top

right) and x (bottom left) directions, after removing the contribution from all gas particles which

inside the virial region of the cluster.
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Figure 5.13. The ratio between the reconstructed and the true (mass–weighted) temperature

and density profiles. The shaded areas encompass the ±1σ regions of the recovered profiles over

the ensemble of simulated clusters. The horizontally shaded area is for the projections along the

z axis, while the vertically shaded area is for the projections along the other two axes. The black

line shows the mean over all projections of all clusters.

a mean value of about 20 per cent at rvir, as a consequence of the relatively larger
contamination by fore/background structures. The scatter is generally larger than the
uncertainty introduced by the noise, so that it has to be considered as intrinsic to the
measure. This scatter has different origins, such as unresolved gas clumps, asphericity of
the clusters, fore–background contaminations. In general, the temperature recovered from
the projection along the z axis is slightly larger than the one from the other two axes. The
difference is more apparent in the central regions and becomes smaller in the outskirts.
The reason for this behaviour is that the temperature reconstruction is more affected
by the tSZ signal. Along the direction of maximum elongation, this signal is enhanced
since the ICM pressure is integrated along a larger path. The tSZ signal receives then an
important contribution from cluster regions where the density is underestimated. As a
result the reconstructed temperature is correspondingly increased to compensate for this
effect.

In figures 5.8–5.11 we also show with a dotted line the three–dimensional profile of
the spectroscopic–like temperature (see Section 3.4). This temperature gives more weight
to the low–temperature phase in a thermally complex ICM. This is the reason for the
drop of the Tsl profile at the cluster centre and for the wiggles which mark the positions
of merging sub-clumps which are relatively colder than the ambient ICM. In general, the
profile of Tsl are lower than those of the electron temperature, by an amount which is
larger for hotter systems (see also Rasia et al., 2005). These figures highlight that the
temperature profiles, as obtained from our deprojection analysis, are much closer to the
mass–weighted temperature, which measures the total thermal content of the ICM, than
to Tsl. An important consequence of this difference will clearly be the estimate of the
total cluster mass from the application of hydrostatic equilibrium. We will discuss the
application of our deprojection method to cluster mass estimates in Chapter 6.
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Figure 5.14. The ratio between the recovered and the true values of the total gas mass for

simulated clusters out to Rvir . For each cluster we show the result of the deprojection along the

three orthogonal directions, with the projection corresponding to the maximum elongation being

marked with a filled circle. Errorbars correspond to the 1σ confidence level, by accounting for the

full error correlation matrix when integrating the 3D gas density profiles. The horizontal dotted

line shows the average value of the ratio.

Figure 5.15. The same of figure 5.14, but as a function of cluster ellipticity (left panel), prolate-

ness (central panel) and elongation along the line of sight (right panel).
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5.3.3 Recovering the gas mass

As a first application of our deprojection procedure, we compute the gas mass of the
clusters, which is calculated simply by summing up the mass contained in each radial bin.
Since the bins are not independent, the errors on the total gas mass have been calculated
by using both variances and covariances of the values of the density at different radii.

σ2
M =

1

N − 1

N
∑

i=0

N
∑

j=0

σm,ij, (5.12)

where σm,ij is the covariance between the mass content of the i-th and of the j-th shells,
directly obtained from the covariance between the gas density in different bins (e.g., see
left panel of figure5.6). Note that since the covariance between the density in adjacent
bins is generally negative, neglecting it would lead to a systematic overestimate of the
error on the mass.

We give the results on the estimate of gas mass for the whole set of 14 simulated
clusters. The small overestimate found for the density profiles is obviously propagated
to the estimate of the total gas mass. The resulting bias turns out to be very small,
and amounts to about 4 percent, with no obvious trend with the cluster mass. This
demonstrates that residual gas clumping, after the removal of the substructures identified
in the X–ray maps, has a small effect on the our capability of recovering the total mass
of the ICM. We note that the cluster-by-cluster variance is often comparable to the
“projection variance”, i.e. to the difference found when projecting the same clusters
along different directions. We also note that the uncertainties in the individual Mgas

estimates, typically of the order of a few per cent, are smaller than the scatter. This
indicates that the intrinsic scatter in the recovered gas mass is in fact associated to the
deviations of the simulated clusters from perfect spherical symmetry.

5.3.4 The effect of morphology

In order to better understand how morphology affects the deprojection, we plot in figure
5.15 the recovered gas mass as a function of cluster ellipticity, prolateness and elongation
along the line of sight. The ellipticity of a triaxial object is defined as:

ǫ =
1

2

a−1
min − a−1

max

a−1
min + a−1

med + a−1
max

(5.13)

and the prolateness as:

p =
1

2

a−1
min − 2a−1

med + a−1
max

a−1
min + a−1

med + a−1
max

(5.14)

The elongation is defined as the ratio between the semi–axis aligned with the line of sight
and the larger of the other two semi–axes.

The gas mass recovered from the projection along the principal axis is generally lower
than those from the other two projections. This underestimate generally is anticorrelated
with the elongation of the cluster, although with a substantial scatter. From the left
and the central panels of figure 5.15, we do not find any significant correlation between
the global 3D morphology of the clusters (prolateness and ellipticity) and the bias in the
deprojection. Instead, as shown in the right panel, any effect in the gas mass recovery is
driven by the orientation of the cluster.
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5.4 Conclusions

In this Chapter we have presented results of our deprojection methods, aimed at recovering
the three-dimensional density and temperature profiles of galaxy clusters, by combining
X–ray surface brightness and thermal SZ (tSZ) maps. The main aim of our analysis is
to verify to what accuracy one can recover the thermal structure of the ICM by taking
advantage of the different dependence of the X–ray and tSZ signal on the gas density
and temperature, thereby avoiding performing X–ray spectroscopy. The two deprojection
methods considered are both based on assuming spherical symmetry of the clusters.

The first one follows a geometrical approach, in which the 3D profiles are recovered
with an iterative procedure that deprojects the observed images starting from the out-
ermost ring and proceeding inwards. The second method assumes the values of the 3D
gas density and temperature profiles at different radii and computes from them the ex-
pected SZ and X–ray surface brightness which is then compared to the observations with
a maximum likelihood approach. In the computation of the likelihood, we also introduced
a regularization term, which allows us to suppress spurious oscillations in the recovered
profiles. Using a Monte Carlo Markov Chain (MCMC) approach to optimize the sampling
of the parameter space, this second method also allows us to recover the full correlation
matrix of the errors in the parameter fitting.

The main results of our analysis can be summarized as follows.

• The application of both methods to an idealized spherical polytropic β–model shows
that the 3D profiles are always recovered with excellent precision (of about 3–4 per
cent), thus demonstrating that such methods do not suffer from any intrinsic bias.

• The application of the maximum–likelihood method to hydrodynamical simulations
of galaxy clusters always provides deprojected profiles of gas density and tempera-
ture, which are in good agreement with the true ones, out to the virial radius. We
find a small (∼< 10 per cent) systematic overestimate of the gas density, which is due
to the presence of some residual gas clumping, which is not removed by masking
out the obvious substructures identified in the X–ray maps.

• The total gas mass is recovered with a small bias of 4 per cent, with a sizable scatter
of about 5 per cent. This result shows that residual gas clumping should have a
minor impact in the estimate of the total gas mass. We do not find any trend in
the recovery of the gas mass with the total cluster mass.

• The gas mass reconstructed along the maximum elongation axis is generally lower
(by up to 10 per cent) with respect to the mass reconstructed along the other two
projection axes, the size of this effect being larger for more elongated clusters.

• The temperature is generally well recovered, with ∼ 10 per cent deviations from
the true one out to ≃ 0.7Rvir. The rather small size of this bias confirms that
the combination with tSZ data is a valid alternative to X–ray spectroscopy for
temperature measurements. The temperature reconstructed from the projection
along the axis with maximum elongation is slightly higher than those from the
other two axes, particularly in the inner regions.

Our results confirm the great potentials of combining spatially resolved tSZ and X–
ray observations to recover the thermal structure of the ICM. In the next Chapter, we
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present a development of this method, which implements the solution of the hydrostatic
equilibrium equation, in order to reconstruct also the total mass of the cluster.

The results presented in this Chapter have been published in Ameglio et al. (2007).



Chapter 6

Reconstruction of the cluster total
masses

A number of important cosmological tests are based on mass measurements in galaxy
clusters. In particular the mass function and its redshift evolution are highly sensitive to
the underlying cosmology and provides constraints on ΩM , ΩΛ, σ8 and possibly on the
dark energy equation of state w. Precise mass measurement in galaxy cluster are then
necessary to calibrate clusters as precision tools for cosmology (e.g., Haiman et al. 2001;
Rosati et al. 2002; Pierpaoli et al. 2003; Voit 2005).

In X–ray studies, the total collapsed mass of a cluster is determined by applying the
hydrostatic equilibrium equation to gas density and temperature profiles. Rasia et al.
(2004) (see also Kay et al., 2004) analyzed a set of hydrodynamical simulations and found
that the gas is not in a state of perfect hydrostatic equilibrium. Instead, they found
deviations up to 20%, which have the effect of systematically biasing low the reconstruc-
tion of the total gravitating mass. To quantify this bias, several authors analyzed sets
of hydrodynamical simulations by following the same procedure which is used in X-ray
observations, finding that generally the reconstructed mass is underestimated by 10–20%.
The amount of this underestimate depends on both the model assumed and the dynami-
cal state of the cluster. Rasia et al. (2006a) showed that adopting an appropriate model
for gas and/or mass may substantially increase the bias. In particular, the isothermal
β–model seems to give the worst reconstruction. Nagai et al. (2007) differentiated their
sample in relaxed and unrelaxed clusters, with the latter showing a larger scatter in mass
reconstruction. Following the same direction, Jeltema et al. (2007) found a correlation
between the quantitative measures of the morphology of the X–ray images and the bias
in the mass reconstruction, although with a quite large scatter. Finally, Puchwein &
Bartelmann (2007) probed the deviations from hydrostatic equilibrium in different stages
of a merger process.

The total mass reconstruction via the hydrostatic equilibrium equation involves the
derivative of both gas density and temperature. Then, an accurate mass determination
requires high–quality temperature measurements. For this reason, X–ray studies are often
limited to the inner regions of the clusters and to objects at moderate redshift. Instead,
we propose to use a combination of X–ray imaging and tSZ data, which avoids the use
of X–ray spectroscopy. Different algorithms, which use a combination of tSZ and X–
ray data, have been proposed by other authors and applied to analytical cluster models
and/or sets of simulated clusters. A brief review of the relevant papers is presented in the
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introduction of Chapter 5. Owing to the low resolution of past tSZ telescopes, this method
has been applied to a handful of observed clusters (Zhang & Wu, 2000; Pointecouteau
et al., 2002), with results that are generally consistent with those obtained by analyzing
the same objects through X–ray spectroscopy.

Accurate mass profiles reconstruction can also be used as probes for cosmology. In
fact, mass profiles are expected to follow a unique functional form, which is valid over a
wide range of masses, from white dwarfs to massive galaxy clusters. A formulation for
this function has been provided by fitting the mass profiles in a set of N–body simulations
by Navarro et al. (1997) (NFW hereafter). High quality X–ray data from Chandra and
XMM–Newton observations seem to confirm the validity of the NFW model, out to large
portions of the cluster virial radius (e.g. Pratt & Arnaud, 2002; Pointecouteau et al., 2005;
Vikhlinin et al., 2006; Zappacosta et al., 2006).

In this Chapter, we extend the deprojection algorithm presented in Chapter 5, by
including the solution of the hydrostatic equilibrium equation. Using this technique, we
analyze a set of 14 simulated clusters having Tsl∼> 3 keV, reconstructing the total mass
profiles from X–ray and tSZ images. Our results show that the total mass profile can be
recovered, with a bias which is mostly due to deviations from perfect hydrostatic equi-
librium. The analysis present here could be easily performed with the present generation
of X–ray telescopes. However, future X–ray observations with much lower background
(as expected from the eROSITA mission) will allow to extend further in redshift the
suitable sample of galaxy clusters. As for the tSZ data, exploiting the full potential of
the technique would require spatially resolved observations, which will be available from
upcoming (or just started) SZ experiments.

This Chapter is structured as follows. In Section 6.1 we present the hydrostatic
equilibrium equation and probe the deviations from this equilibrium in the ICM of our
set of simulated clusters. This represents a preliminary test which will provide a better
understanding of our final results. The deprojection technique is explained in detail in
Chapter 5, while section 6.2 describes the implementation of the hydrostatic equilibrium
equation in the algorithm. We use the same subset of simulated clusters having Tsl∼> 3
keV, which is described in Chapter 5 and also the four clusters (C1, C2, C3 and C4)
chosen as examples are the same. Section 6.3 presents our results on the analysis of
simulated clusters. Finally, our main conclusions are summarized in Section 6.4.

6.1 The hydrostatic equilibrium

The total mass profiles from observations of the ICM in galaxy clusters is determined by
assuming that the gas is in hydrostatic equilibrium in the gravitational potential. For a
spherically symmetric cluster, the equation of the hydrostatic equilibrium can be cast in
the form:

Mtot(< r) = − kT r

Gµmp

[

d ln ne

d ln r
+

d ln T

d ln r

]

, (6.1)

where G is the gravitational constant, µ is the mean molecular weight of the gas (µ ≃ 0.6
for a gas of primordial composition), mp is the proton mass and r is the distance from
the center of the cluster. Note that the mass at a given radius depends only upon the
local pressure derivative and is unaffected by the regions interior or exterior to the radius
of interest.

Eq. (6.1) essentially states that the gas pressure balances the attraction due to the
gravitational field and keeps the gas on a stable (static) equilibrium. This would be
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Figure 6.1. Ratio between the hydrostatic and the true mass profile averaged over the set of

simulated clusters. The shaded area encompasses the 16 and 84 percentile over the ensemble of

the clusters.

the case of a perfectly relaxed cluster. Indeed, deviation from this perfect equilibrium are
instead quite common, owing to non–thermal pressure support given by turbulent motions
(Rasia et al., 2004; Kay et al., 2004; Dolag et al., 2004; Nagai et al., 2007). These processes
are responsible for an extra, non–thermal pressure support in eq. (6.1). thus leading to
an underestimate of the total gravitating mass. As a consequence, the mass estimated
through the hydrostatic equilibrium equations is found in simulations to be systematically
lower than the true one. Rasia et al. (2004) show that an extra–term should be added
in the equation of the hydrostatic equilibrium, which takes into account turbulent gas
motions. Jeltema et al. (2007) find a correlation between the amount of substructures
and the underestimate of the total mass, in a set of hydrodynamical simulations. However,
the large scatter in this correlation around the mean relation suggests that substructures
may not be the only sources of the bias in the mass reconstruction.

Before applying our procedure of mass reconstruction, we probe the deviations from
the hydrostatic equilibrium in our simulated clusters, in order to better understand the
origin of the errors in our final results. We apply the eq. (6.1) to the true, 3-D density
and temperature profiles, by performing a numerical derivative in the log-log space. We
will refer to the mass so computed as hydrostatic mass Mhyd hereafter. In the case of
a perfect hydrostatic gas, this would coincide with the total mass profile. In figure 6.1
we show the profiles of the ratio Mhyd/Mtrue averaged over our set of simulated clusters.
From the analysis of simulated cluster, we generally find an underestimate of the total
mass ∼ 10–15% out to about R500, which is in line with the values found by other authors
(Nagai et al., 2007; Puchwein & Bartelmann, 2007; Jeltema et al., 2007). In the outskirts
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the underestimate increases to about 20% at the virial radius, owing to a larger fraction
of turbulent motions. This is consistent with the expectation that outer cluster regions
dieviate more from the hydrostatic equilibrium condiction, due to the presence of ongoing
merging and accretion processes.

6.2 Methods of mass profile reconstruction

The analysis presented in this Section represents a development of the maximum likelihood
deprojection described in section 5.1.2. The algorithm is modified in order to solve the
hydrostatic equilibrium equation while deprojecting the cluster images. In this way, the
gas density and temperature and the total mass profiles are derived simultaneously and
in a fully self–consistent procedure.

The fitting parameters are in this case the gas density and the total mass profiles. As
described in Section 5.1.2, the cluster image is divided into N concentric annuli equally
spaced in logarithm. The cluster is then modelled as composed by N concentric spherical
shells, having the same radii of the annuli. However, in this case the gas density and the
total mass are the fitting parameters, while the gas temperature is derived by solving the
hydrostatic equilibrium equation.

As for the gas density in each spherical shell, it is treated as a free parameter, as
described in Section 5.1.2. As for the total mass, the adopt two different approaches.

• Method 1. This method does not assume any particular functional form for the
mass profile. Instead, the integrated mass enclosed by the mean radius of each shell
is treated as a free parameter. The only constraint that we impose is that the mass
has to increase with radius, in order to avoid unphysical solutions. The advantage
of this method is that it provides a completely model–independent reconstruction
of the mass profile, which relies only on the hydrostatic equilibrium assumption.
However, the request of having a mass growing with radius could slightly bias high
the recovered profile.

• Method 2. This method adopts the NFW functional form. Its major advantage
is that the reconstruction becomes much more stable, at the cost of assuming a
particular model for the mass profile. The NFW functional form is:

M(< r) = 4πr3
sρcritδcf(x) (6.2)

where rs is a characteristic scale length, x is the distance from the center of the
cluster in units of rs, f(x) = ln(1 + x) − x/(1 + x), ρcrit is the critical density
for collapsing Universe and δc is a characteristic overdensity. It is common (and
more convenient) to rewrite the above equation by expressing δc as a function of the
concentration parameter c = r∆/rs, where ∆ is a given overdensity. Here and in
the following, we adopt the virial overdensity, which in our cosmology corresponds
to ∆ = 100. The characteristic overdensity is rewritten in terms of:

δc =
∆

3

c3

f(x = c)
(6.3)

The NFW profile becomes now:

M(< r) =
4π

3
(rsc)

3ρcrit∆
f(x)

f(x = c)
(6.4)
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As for the temperature profile, it is computed in both cases by assuming that the
gas is in hydrostatic equilibrium in the potential well of the total mass distribution (see
paragraph 6.1). By inverting the equation of the hydrostatic equilibrium one first obtains
the gas pressure profile and then the gas temperature, by combining it with the gas
density. In this way we obtain:

kT (r) =
1

ne(r)

{

Gµmp

∫ r

rout

neMtot(< r)

r2
dr − P (rout)

}

, (6.5)

where the integral is performed from the outermost radius from which the deprojection
is performed, rout, and the radius of interest r.

For both methods, at each iteration of the Markov Chain Monte Carlo procedure, new
profiles for gas density and total mass are proposed and the corresponding temperature
profile is computed. The gas density and temperature profiles are combined to compute
the X–ray and tSZ profiles, which are compared to the ones in the maps to compute the
joint likelihood. The new values are either accepted or rejected according to the criterion
described in Section 5.1.2.

Since the hydrostatic equilibrium equation constraints only the pressure difference
between two points, it is necessary to introduce a further parameter Pout, which represents
the pressure at the outermost radius (see also Morandi et al., 2007). In particular, in the
case of the free profile this parameter is completely degenerate with the mass enclosed in
the outermost bin. The mass has only a lower boundary, given by the fact that it cannot
be lower than the mass enclosed by the inner bin. This turns into an instability of the fit
which generates an overestimate of the global mass. This problem is solved by applying
to the pressure profile the regularization constraint which is described in Section 5.1.2.

6.3 Results

6.3.1 Total mass profiles: method 1

The deprojection technique reconstruct the gas properties (density and temperature)
together with the total mass profiles. However, we point out that the recontructed gas
properties are virtually identical to those obtained with the analysis presented in Chapter
5 (i.e. without solving the hydrostatic equilibrium equation). For this reason, here we
will show only the mass reconstruction.

In figure 6.2 we show the reconstructed profiles of the 4 clusters chosen as examples.
We generally find an underestimate of about 10–15% throughout the virial radius, with
slightly larger deviations in the center and in the outskirts of the clusters. In many cases,
in the first inner bin we do not find a lower boundary for the mass. We point out that
the reconstructed profiles are generally closer to Mhyd than to the true mass profile, thus
suggesting that the main source of systematics is intrinsic, namely the deviation of the gas
from perfect hydrostatic equilibrium. However, in the outskirts the reconstructed profile
tends to be larger than Mhyd. We attribute this to a lower signal–to–noise (SNR ∼ 4− 5)
and to a larger impact of fore/background contaminations in these regions. In fact, the
recovered mass at these radii has only a lower boundary (i.e. it cannot be lower than the
mass at inner radii), but not an upper one. As a consequence, any deviation will be in
the direction of increasing the mass.

In the case of the C1 cluster (figure 6.2, upper left panel) one can see the effect of
fore/background contaminations. The recovered mass is systematically overestimated by
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Figure 6.2. Mass reconstruction for the clusters C1 (upper left), C2 (upper right), C3 (lower left)

and C4 (lower right), while adopting the free mass profile. The black triangles (squares, circles)

and line represent the reconstruction along the x (y, z) axis. The red dashed line represents the

true mass profile, while the blue dotted line is hydrostatic mass obtained from the application of

eq. (6.1) to the true 3–dimensional gas density and temperature profiles. The lower part of each

panel shows the ratio between the same quantities and the true mass.
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Figure 6.3. Reconstructed vs. true (upper panel) and hydrostatic (lower panel) mass, averaged

over the set of simulated clusters. In each panel, the orizontally (vertically) shaded area represents

the mean±1σ over the projections along the z (x and y) axis. The black line represents the mean

over all the projections of all the clusters.

about 20%. In Section 5.3.2, by analyzing the same object, we show that the effect of
such contaminations is basically to boost the temperature profile by a comparable factor.
By considering eq. (6.1) it is clear that this is the origin of the mass overestimate.

In all these four clusters, the mass reconstructed from the projection along the maxi-
mum elongation axis z is larger (by different amounts) than the one reconstructed from
the other two projections. This behaviour is confirmed when considering the whole set
of simulated clusters, as shown in figure 6.3. As also observed in the example clusters,
the reconstructed profiles generally underestimate the true mass by a factor of about 10–
15%, except in the outskirts, where they seem to well recover the true mass. However, we
point out that this better agreement is likely a consequence of a small systematic of our
technique, as discussed above. Futhermore, they are very close to the hydrostatic mass
in the inner regions, while they tend to be much larger than the hydrostatic mass when
moving towards the outskirts. This clearly indicates that the main source of systematic
uncertainty are the deviation of the ICM form the hydrostatic equilibrium and that our
method of reconstruction is basically unbiased, in that it precisely recovers the hydrostatic
mass profiles.

6.3.2 Total mass profiles: method 2

In figure 6.4 we show the reconstructed profiles of the 4 clusters chosen as examples.
The figure does not reports the errorbars because the uncertainties on the reconstructed
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Figure 6.4. Mass reconstruction for the clusters C1, C2, C3 and C4, with the NFW mass

profile. The black line represent the reconstruction along the three axes of projection. The red

line represents the true mass profile, the blue dashed line the hydrostatic mass
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Figure 6.5. Left panel: reconstructed vs. true (upper panel) and hydrostatic (lower panel) mass

profiles, averaged over the whole set of simulated clusters, while fitting the NFW profile over the

whole virial radius (method 2). The shaded area encompasses 68% of the recovered profiles, while

the solid line reports the median. Right panel: accuracy in the virial mass reconstruction. Filled

(empty) circles are for the reconstruction from the projection along the z (x, y) axis. Errorbars

represent the 1σ confidence level.

Figure 6.6. The same as figure 6.5, but fitting the NFW profile out to only R500 end extrapolating

the profile in the outer regions.
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profiles are contained in the errors on the model parameters rs and c, which are generally
recovered with typical errors of a few percent. However, the c and rs values that we find
are larger and smaller, respectively, than those generally found by the analysis of N–body
simulations, at a given mass. The origin of this difference can be the way in which the
fit is performed. In fact, this fit is commonly done on the differential density profile,
while we use the integrated mass profile. Hence, our fit give more relative weight to the
outskirts than to the inner regions. We point out that this difference does not substantially
affect the accuracy of the mass profiles reconstruction, since the we recovered values of
rs and c in the direction of degeneracy of the fitting in the pararameter space. A more
detailed comparison of our values with the values in literature is left to future work.
Clearly, imposing an analytical form for the mass profiles has the important advantage of
providing a much more stable reconstruction and a smooth profile. Similarly to the case
of the method 1, the recovered mass is much closer to the hydrostatic mass than to the
true one.

The lower part of the left panel of figure 6.5 shows the accuracy of the recoverd
mass, averaged over the whole set of simulated clusters. We find that the mass profile is
generally underestimated by a factor of 15–20%. The larger bias with respect to Method
1 is probably due to the fact that here we are adopting an analytical model. The origin of
this bias may be understood by noting that in the outskirts the hydrostatic mass tends to
underestimate the true one by a larger amount (see figure 6.1). Since the procedure aims
at fitting the whole profile, a choice of parameters which produce a lower normalization
turns out to be favoured. The right panel of the same figure reports instead the accuracy
in recovering the total mass as a function of the true mass of the cluster. We find that
the virial mass on average is recovered with a ∼ 20% accuracy, Mrec/Mtrue = 0.80± 0.09.
We do not find any significant trend with cluster mass.

This result suggests that the mass is better recovered while limiting the fit to a smaller
region, typically r < R500. This radius represents the outer limit of most of the present
X–ray observations. For this reason, we repeat the analysis by limiting the fit to this
radius and extrapolating the NFW model out to the virial radius. The accuracy of this
technique is shown in figure 6.6, left panel, after averaging over the whole set of simulated
clusters. We find that the recovered profiles are close to the hydrostatic mass out to
the fitting radius, as expected, with the mass underestimated by 10% out to the virial
radius. This is quite interesting since the fit is limited to a much smaller radius. This
suggests that: i) the outskirts are much more disturbed and there are more deviations
from hydrostatic equilibrium ii) the NFW provides a well description of the mass profile;
since its extrapolation out to Rvir still provides a good description of the mass profile.
The virial mass is recovered with good accuracy, Mrec/Mtrue = 0.88±0.18 (see figure 6.6,
right panel). The larger scatter is due to the fact the we are now fitting a smaller region
of the cluster.

6.3.3 Estimating the virial radius

In the results shown so far, we used the virial radius computed directly from the simulation
data. For real objects, instead, the virial radius is generally not known in advance, but
it is estimated directly from the recovered mass profile. However, if the mass profile is
under/overestimated, also the estimate of the virial radius will be biased low/high. This
turns out into a larger bias in the recovered virial mass (see also Nagai et al., 2007). The
left panel of figure 6.7 shows the reconstructed virial radii Rvir,fit versus the true ones
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Figure 6.7. Left panel: estimated virial radius Rvir,fit versus the one computed from simulation

data Rvir,sim. The dashed line reports the one–to–one relation. Right panel: recovered vs. true

mass, while using Rvir,fit. Note that the two masses correspond to different radii. In both

panels, filled (empty) circles are for the reconstruction from the projection along the z (x, y) axis.

Errorbars represent 1σ confidence level.

Rvir,sim for the set of simulated clusters. The right panel of the same figure reports the
recovered virial mass while using Rvir,fit versus the true virial mass. This plot looks very
similar to the right panel of figure 6.5, which presents the same quantity, but adopting
the virial radius directly on the simulation data. Indeed, for all the cluster the bias is
slightly larger, owing to the fact that the two masses are now computed at different radii.
In fact, the mean values is now Mvir,fit/Mvir,true = 0.75± 0.11, which is about 4% lower.

6.4 Conclusions

Correctly measuring the total cluster mass is of fundamental importance for clusters to
be used as tools for precision cosmology. In cluster studies based on the observations
of the ICM the mass is obtained by assuming that the gas lies in hydrostatic equilib-
rium in the cluster gravitational potential. In this Chapter we discussed a development
of the maximum–likelihood deprojection technique described in Chapter 5, in which we
implemented the solution of the hydrostatic equilibrium equation, so as to derive profiles
of gas density and temperature and total mass simultaneously. We first probe the con-
dition of hydrostatic equilibrium by computing the hydrostatic mass, which is obtained
by applying the equation to the true gas density and temperature profiles, given by the
simulation data. Then, we showed the results obtained with two different methods to
recover the total mass profile. Method 1 adopts a model–independent approach, with the
only constraint of having a mass which increases with radius, in order to avoid unphysical
solutions. Method 2 is instead based on assuming the profile proposed by Navarro et al.
(1997) (NFW hereafter).

Our main conclusions may be summarized as follows.
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• We find in our simulated clusters that deviations from hydrostatic equilibrium are
quite common, due to the presence of non–thermal pressure support (e.g. stochastic
and bulk gas motions). The deviations are of about 10% of the true mass, in line
with previous results presented in the literature. This bias increases from r ∼
1/2Rvir , reaching 20% at Rvir, probably owing to stronger impact of merger events
in the ourskirts, which cause stronger departures from the condition of hydrostatic
equilibrium.

• When applying Method 1, we find that the mass is recovered with about 10–15% un-
derestimate. The requirement of having increasing mass values slightly artificially
boost the reconstructed mass in the outskirts. The scatter is quite large (about
15%), owing to the large number of free parameters. A mass reconstruction based
on an analytical model is probably preferable, however this method has the advan-
tage of providing a mass profile completely free of any assumption, except that of
spherical symmetry.

• Cluster elongation also affects the mass reconstruction. In fact, the mass recon-
structed from the projection performed along the maximum elongation axis is larger
than the mass reconstructed from the other two projections. This is clearly due to
the corresponding overestimate of the gas temperature.

• With the Method 2, we perform two different analyses. The first one is based on
fitting the model out to Rvir. In this case, we find an underestimate of the total
mass of about 20%, which is larger than that obtained from Method 1. This larger
underestimate is due to the assumption of an analytical model, which should fit the
inner regions as well as the outskirts. Since in the outskirts the deviations from
equilibrium are larger, a lower normalization turns out to be favoured. We found
a scatter in the recovered mass profiles of about 10%, thuslower than found with
Method 1.

• The second analysis performed with Method 2 stops the fit at R500 and extrapolates
the model out to Rvir. In this case, the bias is appreciably reduced, clearly owing to
the fact that in the internal regions the gas has smaller deviations from hydrostatic
equilibrium. Unfortunately, limiting the fit to a smaller region originates a larger
scatter, which increases to about 15%

• In all cases discussed above, the recovered mass is much closer to the hydrostatic
mass than to the true mass profile, thus confirming that the main source of sys-
tematics is intrinsic (i.e. the non–thermal pressure support), while our procedure is
basically unbiased.

Our results show that the combination of X–ray images and tSZ data is efficient in
recovering the total mass profile of galaxy clusters. In fact, the main bias that we found
is intrinsic, since it is due to deviations from perfect hydrostatic equilibrium.

This approach has several advantages with respect to the traditional one based on
X–ray spectroscopy. First, the temperature recovered from the fit of the X–ray spectra is
known to provide a biased estimate of the total thermal content of the ICM, the size of
this bias increasing with the complexity of the plasma thermal structure (e.g., Mazzotta
et al., 2004; Vikhlinin, 2006). Secondly, X–ray surface brightness profiles can be obtained
with good precision with a relatively small number of photon counts. Also, once the
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cosmic and instrumental backgrounds are under control, the surface brightness can be
recovered over a large portion of the cluster virial regions, as already demonstrated with
ROSAT-PSPC imaging data (e.g., Vikhlinin et al., 1999; Neumann, 2005). Since the tSZ
has the potential of covering a large range in gas density, then its combination with low–
background X–ray imaging data will allow one to recover the mass profiles out to the
cluster outskirts.

A limitation of the analysis presented in this Chapter is that we did not include realistic
backgrounds in the generation of the X–ray and tSZ maps. As we have just mentioned,
there are reasonable perspectives for a good characterization of the X–ray background.
However, the situation may be more complicated for the tSZ background. In this case,
contaminating signals from unresolved point–like radio sources (e.g., Bartlett & Melin,
2006) and fore/background galaxy groups (e.g., Hallman et al., 2007) could affect the
tSZ signal in the cluster outskirts. In this respect, the possibility of performing multi–
frequency observations with good angular resolution will surely help in characterizing and
removing these contaminations.

Single–dish sub-millimetric telescopes of the next generation promises to provide tSZ
images of clusters with a spatial resolution of few tens of arcsec, while covering fairly large
field of views, with 10–20 arcmin aside, with a good sensitivity. At the same time, future
satellites for X–ray surveys (e.g. eROSITA) will have the capability of surveying large
areas of the sky with a good quality imaging and control of the background. These ob-
servational facilities will open the possibility of carrying out in survey mode high–quality
tSZ and X–ray imaging for a large number of clusters. The application of deprojection
methods, like those presented in this Chapter will provide reliable determinations of the
temperature profiles and, therefore, of the total cluster mass. This will greatly help to
exploit the potentiality of galaxy clusters as tools for precision cosmology.
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Chapter 7

Conclusions

Galaxy clusters are virialized structures which are the result of a long and complex for-
mation process. Their study has implications on both the thermodynamical processes on-
going in the hot intra–cluster medium (ICM) and on the cosmological models of structure
formation. Indeed, the ICM thermodynamics is determined not only by the gravitational
accretion of gas into the dark matter potential wells forming clusters, but also by energy
feedback processes (e.g. from supernova explosions and active galactic nuclei), which
took place during the cosmic history of the cluster assembly. A characterization of the
ICM thermodynamics out to larger radii than accessible with present X–ray observations
would provide a better understanding of these important processes. Moreover, a number
of important cosmological tests are based on mass measurements in galaxy clusters. In
particular the mass function and its redshift evolution are highly sensitive to the under-
lying cosmology and in principle can constrain the equation of state of the dark energy.
The redshift evolution of the gas mass fraction in galaxy clusters is also able to constrain
cosmological parameters. Indeed, precise mass measurements in galaxy clusters are highly
relevant to calibrate clusters as precision tools for cosmology (e.g., Haiman et al., 2001;
Rosati et al., 2002; Pierpaoli et al., 2003; Voit, 2005).

The main focus of the research presented in the Thesis was the study of the potential-
ity and possible systematics in combining observations of the thermal Sunyaev-Zeldovich
effect (tSZ) and of the X–ray emission in galaxy clusters. The advantage of the combi-
nation of these two types of observations is that they have a different dependence on the
properties (density and temperature) of the Intra Cluster Medium (ICM). Also the be-
havior with redshift is completely different: X–rays provide very bright images for nearby
clusters, but rapidly dimming with redshift, while the SZ is independent of redshift and
is more suitable to observations of distant objects. At present, the X–ray data have far
better sensitivity and resolution than the SZ ones. For this reason, our attention is mainly
directed to the upcoming generation of SZ telescopes, which should produce high signal–
to–noise images, with improved angular resolution. In this perspective, we analyzed a
sample of galaxy clusters extracted from a set of cosmological hydrodynamical simula-
tions, which have been realized with the GADGET-2 code. These simulations include the
effects of radiative cooling, star formation and supernovae feedback and, as such, they
provide a realistic description of the ICM.

105
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Angular diameter distance

A widely adopted technique to measure the angular diameter distance of galaxy clusters
is based on the combination of X–ray and tSZ observations (e.g. Bonamente et al. 2006
and references therein). The method is completely independent of any other distance
ladder and provides a measure of the Hubble constant out to z ≃ 1. In Chapter 4 we
studied the systematics of this type of measure through the analysis of simulated clusters.

First, we found that correctly modelling the temperature profile is of key importance.
It is common practice in observations to assume an isothermal model. We find that this
model does not provide a satisfactory description of our simulated clusters and, thus,
leads to a systematic underestimate of the angular diameter distance, of about 40%. The
bias is probably amplified by the fact that temperature profiles of simulated clusters are
steeper than those observed in the cool core region of real objects, which generally show
an isothermal core. However, our results suggest that the non–isothermal temperature
profiles should be taken into account.

By adopting a polytropic model to account for the temperature profiles, we found that
the angular diameter distance is correctly recovered, with an intrinsic scatter of about
20%. The origin of this scatter has to be considered as intrinsic to the measurement and is
mainly related to cluster asphericities. In fact, the measure of the distance is based on the
assumption that the elongation of the cluster along the line of sight (given by X–ray/tSZ
analysis) is equal to its dimension in the plane of the sky (given by its image). Assuming
that cluster ellipticities are distributed randomly, this only leads to a scatter, but not to
a bias. This fact highlights the importance of an appropriate selection of unbiased cluster
samples.

Finally, we generated a redshift distribution of our clusters in order to test the capabil-
ities of this technique in recovering the cosmological parameters, by fitting the distance–
redshift relation. We first limit the fit to redshift z < 1, which corresponds to the capa-
bility of present observations. In this case, only the normalization of the relation can be
fitted, thus obtaining an unbiased estimate of the Hubble constant, with an uncertainty
of only 2%. Then, we extend this type of measure out to z ≃ 1.5, in the perspective of
having in the future such datasets. Assuming a prior for the Hubble constant and a flat
geometry, the method would allow to correctly recover also the density parameter Ωm

with a typical error of about 0.05.

Joint deprojection of Sunyaev–Zeldovich and X–ray images of galaxy clusters

Given the limited resolution of the present tSZ telescopes, the principal source of informa-
tion on the internal structure of galaxy clusters comes from X–ray data, for which both
imaging and spectroscopy are available. In the perspective of having new high-resolution
tSZ images, in Chapter 5 we proposed a technique aiming at reconstructing gas density
and temperature by combining them with the X–ray images, without the need of X–ray
spectroscopy which is a potential source of biases in the measure of the ICM temperature.

The method is based on a joint deprojection of tSZ and X–ray images and requires
the only assumption of spherical symmetry. Gas density (ρ) and temperature (T ) can
be recovered by taking advantage of the different dependence of the two signals on gas
properties: tSZ ∝

∫

ρTdl while X–ray ∝
∫

ρ2Λ(T )dl, where Λ(T ) is the cooling function
at X–ray energies and the integrals are performed along the line of sight.

Our technique implements the deprojection by following a Markov Chain Monte Carlo
approach, which allows us to deproject both images simultaneously, by the maximization
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of a joint (tSZ + X–ray) likelihood function. From this method, we obtain at the same
time an accurate estimate of the uncertainty on the recovered profiles of density and
temperature, together with an analysis of all degeneracies in the fitting parameters.

A typical feature of the geometrical deprojection is to introduce spurious fluctuations
in the profiles, which are due to the presence of noise. The effect increases rapidly when
reducing the width of the bins adopted in the deprojection. Our statistical approach
instead allows us to introduce a regularization constraint which has the effect of smoothing
out these spurious fluctuations, thus offering a much more stable reconstruction of the
gas properties.

We test the whole procedure against an idealized cluster, realized by assuming a poly-
tropic β–model. First we perform a classical geometrical deprojection. Then we apply
our maximum—likelihood technique, but switching off the regularization constrain. Fi-
nally we apply the complete procedure. We find that the geometrical deprojection is
able to recover the density and temperature of the ICM unbiased, with errors < 5% and
about 20% respectively. Our technique without regularization constraint obtain identi-
cal results, with the advantage of providing also an accurate analysis of the statistical
errors and an estimate of the degeneracies (which are not trivial). Finally, we find that
the introduction of the regularization constraint is very efficient in suppressing spurious
fluctuations, without introducing any bias.

By applying this method to the simulated clusters we find a general overestimate of
density from 5 to 10%, which we attribute to small-scale inhomogeneities and to small
unresolved gas clumps which cause a boosting of the X–ray surface brightness. As a
consequence the temperature is slightly underestimated. By integrating the gas density
profiles one directly obtains the gas mass content of the cluster. Together with an estimate
of the total mass, it allows us to measure the gas mass fraction, which is another important
constrain on cosmological models. Since the density within each shell depends on the
density of all the other shells, it is important to have an estimated of the full covariance
matrix, which is naturally provided by the Markov Chain Monte Carlo method. We find
that the gas mass is also overestimated by about 5-10%, with a statistical uncertainty of
about 5%.

A common way to select samples of clusters is to fix a lower limit in their X–ray
flux. This criterion may slightly favor the selection of objects which are elongated along
the line of sight. This represents a potential source of bias when these samples are
used for a statistical analysis of cluster properties. To address this issue, we carried out
three synthetic observations of each cluster by projecting it along the three principal axes
of the inertia tensor, in order to understand the impact of cluster morphology on the
reconstruction of gas properties. We find that cluster elongation along the line of sight
biases the deprojected gas density profile upwards at r < 0.2rvir and downwards at larger
radii. A comparable bias is also found in the deprojected temperature profile. Overall,
this turns into a systematic underestimate of the gas mass, by up to 10%.

Total mass estimate

As already emphasized, correctly measuring the total cluster mass is of fundamental
importance for clusters to be used as tools for precision cosmology. In cluster studies
based on the observations of the ICM the mass is obtained by assuming that the gas
lies in hydrostatic equilibrium in the cluster gravitational potential. In Chapter 6 we
discussed a development of the maximum–likelihood deprojection technique, in which
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we implemented the solution of the hydrostatic equilibrium equation, so as to derive
profiles of gas density and temperature and total mass simultaneously. In practice, this
involves a derivative of gas density and temperature profiles, for which the above discussed
regularization constraint is quite useful. We implement two methods to recover the total
mass profile. Method 1 adopts a model–independent approach, with the only constraint
of having a mass which is increasing with radius, in order to avoid unphysical solutions.
Method 2 is instead based on assuming the profile proposed by Navarro et al. (1997)
(NFW hereafter).

The assumption that the gas is in perfect hydrostatic equilibrium is actually idealized.
Instead, deviations from such equilibrium are expected in our simulations, due to any non–
thermal pressure support (e.g. stochastic velocity fields and residual bulk motions). In
order to better characterize the sources of systematics in mass measurements, we also
computed the profile of the hydrostatic mass (Mhyd), which is obtained by applying the
hydrostatic equilibrium equation to the true gas density and temperature profiles, given by
the simulation data. It basically measures how far the gas is from a situation of perfect
hydrostatic equilibrium. We found that Mhyd generally provides an underestimate, by
about 10%, of the true mass, in line with previous results presented in the literature.
This underestimate increases from r ∼ 0.5Rvir , reaching 20% at Rvir, probably owing to
more frequent merger events in the outskirts, which cause stronger departures from the
condition of hydrostatic equilibrium.

When applying Method 1, we find that the mass is recovered with about 10–15%
underestimate. The recovered mass is much closer to the hydrostatic mass than to the
true mass profile, thus confirming that the main source of systematics is intrinsic (i.e. the
non–thermal pressure support), while our procedure is basically unbiased. Following the
same approach of Chapter 5, we asses the effects of cluster elongation also on the mass
reconstruction. We find that the mass reconstructed from the direction of maximum
elongation is generally larger than the mass reconstructed from the other two projections.
This is clearly due to the overestimate of gas temperature.

As for Method 2, we perform two different analyses. The first one is based on fitting
the model out to Rvir, the second stops at R500 and extrapolates the model out to Rvir. In
the first case, we find an underestimate of the total mass of about ∼< 20%, which is larger
than the one obtained from Method 1. This larger underestimate is due to the assumption
of an analytical model, which should fit the inner regions as well as the outskirts. Since in
the outskirts the deviations from equilibrium are large, a lower normalization turns out
to be favored. The bias is appreciably reduced by limiting the fit to R500 in the second
analysis. However, limiting the fit to a smaller regions originates a larger scatter, which
increases from 10% to 15%

Future perspectives

New X–ray and tSZ surveys have just started or will start in a few years. In order
to extract the maximum cosmological information from these surveys, it is necessary to
precisely calibrate the relations between X–ray and tSZ measurable quantities and the
cluster mass in both normalization and scatter, in order to have systematic and statistical
errors under control. In this respect, hydrodynamical simulations will keep providing
an important contribution in the coming years. Present simulations have achieved an
high degree of complexity in describing the thermodynamical processes ongoing in the
ICM. Some discrepancies with observations are still present in the core regions, however
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the global properties are generally well reproduced and we can safely assume that the
simulated clusters provide a realistic description of the real ones. We plan to use already
available and future simulations of clusters to calibrate scaling relations in two directions.
On one hand, to test how well a given observable correlates with the true cluster mass,
which would not be directly measured in real clusters. On the other hand, to check if
any additional systematics or scatter is introduced when trying to calibrate these relations
using real clusters, which may be affected by systematics, both intrinsic and instrumental.
This can be achieved by carrying out synthetic observations of simulated cluster with
dedicated software and then by analyzing them with exactly the same techniques used in
observations. The first step is straightforward, the second requires a much more complex
work.

The noise scheme implemented in our synthetic maps is quite simple and does not
account for all possible instrumental effects. We plan to improve it, in order to achieve
a more realistic characterization of possible systematics. On the X–ray side, Rasia et al.
(2006) realized the X–ray MAps Simulator X–MAS, which produces realistic synthetic
observations of both the XMM–Newton and the Chandra satellites. As for the tSZ, we
plan to implement more sophisticated noise scheme, modelled on radio–interferometers
like the Sunyaev–Zeldovich Array (SZA). The goal of this project will be to test the
capabilities and possible systematics of our deprojection procedure, in the perspective of
applying it to real clusters.

The new generation of tSZ instruments, which are now starting observations, will
provide suitable data for our deprojection technique. We plan to combine new tSZ obser-
vations performed with the the SZA and the CARMA (Combined ARray for Millimiter
Astronomy) arrays with data available from public archives of the Chandra and XMM–
Newton satellites. For nearby clusters, we will compare the tSZ–derived gas temperature
and total mass profiles with those obtained via X–ray analysis, to check for inconsisten-
cies. Then we will extend the analysis both to more distant objects and reaching larger
radii, were the X–ray spectral analysis can be really challenging. This will provide a bet-
ter characterization of the outskirts of galaxy clusters and an extended analysis of cluster
properties at high redshift, when they are in an earlier stage of their formation process.
Both aspects are highly relevant for cosmology studies.

The future will see the development of new X–ray and SZ instruments, which will
shed a new light on our knowledge of galaxy clusters and cosmology. As for the X–
rays, thanks to a its low background, the eROSITA mission will provide images of galaxy
clusters out to z = 1 in survey mode. Furthermore, technology of X–ray mirrors will
reach maturity in a ten–year timescale to allow carrying out X–ray surveys with improved
sensitivity, even with respect to eROSITA. As for the SZ, experiments like CCAT working
in survey mode will provide images of large samples of galaxy clusters to be combined
with X–ray data. Furthermore, new interferometers like ALMA will provide exquisite
high resolution follow–ups of interesting objects, also at high redshift. There is no doubt
that this new generation of X–ray and SZ instruments will then start a new promising
epoch for exploiting the potentiality of galaxy clusters as cosmological probes.
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Appendix A

Basics of cosmology

The birth of modern cosmology can be placed in the 1920’s, with the formulation of the
Standard model or Big Bang model. After that Hubble discovered that other galaxies
exist in addition to the Milky Way and that all these galaxies move away from ours with
a uniform and isotropic expansion (Hubble, 1926; Hubble & Humason, 1931). Einstein
already formulated the General Relativity theory. However, he spent many efforts in
trying to avoid the solution of a non–static Universe, which it instead implies. On the
contrary, Friedmann developed some models of Universe, based on Einstein’s theory, which
found an observational validation in Hubble results. Since then, much progress has been
made in different directions, from the primordial nucleosynthesis to the thermal history
of the Universe, from the study of the large scale structure formation to the observations
of the Cosmic Microwave Background radiation (CMB). An important advancement has
been provided in 1981, when Guth & Weinberg (1981) introduced the theory of inflation,
which solved some serious problems of the standard Big Bang model.

This Appendix provides a introduction to modern cosmology. The topics which are
more relevant for the work presented in this Thesis are discussed. For a complete treat-
ment of the Standard Model one may see Coles & Lucchin (2002), Longair (1998), Peacock
& Murdin (2002) or Padmanabhan (2002).

A.1 The cosmological principle

Modern cosmology is based on a fundamental assumption, which has been called cosmo-
logical principle because of its importance. It states that on large scales, the Universe is to
a good approximation homogeneous and isotropic: this means that there are no favourable
positions or directions. The justifications for this assumption are mostly observative and
will be presented in the following.

A.2 Properties of the Universe on large scales

A.2.1 The Hubble law

Hubble & Humason (1931) found that galaxies move away from us with a velocity directly
proportional to their distance:

v = H0d, (A.1)
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where v is the velocity of the galaxy, d is its distance and H0 is the Hubble constant. This
constant is usually written in terms of the dimensionless parameter h:

h =
H0

100km/s/Mpc
. (A.2)

Recent observational determinations of h, based on independent methods, agree with
each other and indicate a value in the range h = 0.7 ÷ 0.8. The CMB power spectrum
gives an estimate of h0 = 0.732+0.03.1

−0.03.2 (WMAP 3–year data, Spergel et al., 2007), the
supernovae Ia give h0 = 0.73 ± 0.04 ± 0.05 km/s/Mpc (statistical and systematic errors,
Riess et al., 2005), finally the measure performed using Cefeids and SNIa in the local
Universe by the HST key project gives h0 = 0.72 ± 0.08 km/s/Mpc (Freedman et al.,
2001). The Hubble constant can be also inferred from combined X–ray and Sunyaev–
Zeldovich observations; the most recent determination from Bonamente et al. (2006) gives
h0 = 0.769+0.039

−0.034
+0.1
−0.08 km/s/Mpc. See also Section 2.4.

The Hubble law is valid only over a restricted interval of distances. If the galaxies are
too close, the peculiar motions of the galaxies will dominate their velocity. If they are
too far, the law in not valid anymore. In fact, it represents the local approximation of a
more general relation, which is explained in Section A.5.

A.2.2 The isotropy of the Cosmic Microwave Background radiation
(CMB)

The isotropy of the CMB represents the most striking evidence of the isotropy of the
Universe itself. In addition, the fluctuations in its pattern give direct information on the
primordial density perturbations which gave rise to present large scale structures (galaxies
and clusters of galaxies).

The isotropy of the CMB is related to the problem of the cosmological horizon1. The
cosmic background formed when the photons decoupled from baryonic matter, about
380,000 year after the Big Bang when the Universe had a temperature of about 0.3 eV.
The cosmological horizon at that time is now subtended by an angle of θ ∼ 2◦. However,
the CMB is substantially isotropic on scales much larger than θ, thus clearly indicating
that the Universe at that time was homogeneous at scales larger than the cosmological
horizon. This could not be explained until 1981, when Guth & Weinberg (1981) proposed
the inflationary theory, so called since it predicts a period of very rapid (exponential)
expansion of the Universe. During this period, regions which are now distant could have
been in contact, thus justifying the present homogeneity.

A.2.3 The mean density of the Universe

The total density of the Universe is given by the sum of different components. The
contribution of each component is usually given in units of the critical density, which
corresponds to the density required to have a Universe with flat geometry (see eq. A.23).
The critical density is given by:

ρcrit = 1.9 · 10−29h2g/cm3 (A.3)

1The cosmological horizon at a given time is the maximum distance from which a signal travelling
at the speed of the light could arrive. This means that two points which are separated by a distance
larger than the cosmological horizon cannot be related in any way. At present time it is roughly equal to
l ≃ c/H0 ≃ 3000h−1 Mpc



A.2. PROPERTIES OF THE UNIVERSE ON LARGE SCALES 113

The density parameter associated to the i–th component is then defined by:

Ω0,i =
ρ0,i

ρc,0
, (A.4)

where ρ0,i is the mean cosmic density of this component, ρc,0 is the critical density and
the subscript “0” indicates the quantities are computed at the present time.

Photons and neutrinos

Also the CMB gives a contribution to the total density of the Universe, although very
small. Its density parameter is:

Ωr ≃ 2.6 · 10−5h−2. (A.5)

The Standard Model predicts, in addition to the background radiation, a neutrino
background. However, it is too weak to be detected with present instruments, mainly
because of the very small cross–section of these particles. The density of the neutrinos
depend on their mass, which is still unknown:

Ων ≃ 0.1Nν
〈mν〉
10 eV

h−2, (A.6)

where Nν is the number of neutrino species and 〈mν〉 is the mass averaged over the three
species.

Galaxies

The contribution due to the galaxies is estimated by multiplying their mean luminosity
per unit volume Lg by the mean value of ratio between mass and luminosity in galaxies

M/L. A typical value of the mass–luminosity ratio is
〈

M
L

〉

≃ 10hM⊙

L⊙
. The measurements

of this ratio showed the presence of large halos composed by dark matter around galaxies.
The dark matter component is typically 3− 10 times larger than the luminous one. This
is particularly evident in spiral galaxies, since they show a flat rotation curve also in the
outskirts. However, dark matter halos are observed also around elliptical galaxies. Then,
the contribution due to the galaxies turns out to be ρg,0 ≃ 6 ·10−31h2 g/cm3, with density
parameter:

Ωg ≃ 0.03. (A.7)

Galaxy clusters

The galaxy clusters have typical masses of MCl ≃ 1014−15 h−1M⊙. They have a much
larger mass–luminosity ratio with respect to galaxies, typically M/L ∼ 300M⊙/L⊙. The
dark matter is then the dominant matter component in these objects (and it determines
their dynamics). By assuming that all the matter in the Universe has the same M/L as
in clusters, one obtains:

Ω ∼ 0.3 (A.8)
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The baryons

The theory of the primordial nucleosynthesis gives very accurate constraints on the den-
sity of baryonic matter Ωb, since it is very sensitive to this parameter. From present
abundances of light elements (namely 2H, 3He, 4He, 7Li) one obtains:

1.1 · 10−2h−2 < Ωb < 2.5 · 10−2h−2, (A.9)

while from the CMB (Spergel et al., 2007):

Ωb = (2.23 ± 0.07) · 10−2h−2. (A.10)

Most of the baryons in the Universe are in the form of diffuse gas, while the stars
in galaxies give a contribution of only a few percent. However, the hot gas observed in
galaxy groups and clusters in the local Universe corresponds to only about half of the
total amount of baryons, thus indicating that a part of the baryons is still missing. The
situation is different in the distant Universe. In fact, estimates from the Lyα forest2

are able to account for the totality of the baryons. This fact strongly supports the fact
that most of the missing baryons are actually in the form of a warm diffuse gas, which
is not currently detected owing to its very low X–ray brightness. Other candidates, such
as black holes or white dwarfs, are though to give a negligible contribution. A detailed
estimate of the baryon budget in different states can be found in Fukugita et al. (1998).

A.2.4 The non–baryonic dark matter

The estimates of the gravitational field in the outskirts of both spiral and elliptical galaxies
and, to a much larger amount, in galaxy clusters show evidence of the presence of a dark
matter component, whose nature is still unknown. In fact, the estimates of the baryonic
density clearly indicate that this component cannot be of baryonic origin. Instead, it
should be a new type of particle, which has never been observed and which constitutes
about 90% of the total amount of matter in the Universe. Its presence is also required
to explain the process of formation of cosmic structures. In fact, theoretical models show
that baryonic matter should not be able to form the structures which we observe today.
Instead, it is necessary the presence of different type of particles, which are of non–
collisional nature and thus do not have a pressure term. Such particles should serve as
catalyser for the collapse of the baryonic matter. The dark matter particles should have
a very small cross–section at least for two reasons: i) they have never been observed; ii)
they should decouple from radiation before the nucleosynthesis, in order to not altering
its results. They interact through gravitational forces, so they must have mass, which
may be also very large. For these reasons, these particles are generally called WIMPs
(Weakly Interacting Massive Particles). An additional constraint on dark matter theories
is to explain why we do not observe the effects of these particles in the Solar system.
Some candidates have been drawn from theoretical particle physics, which can be divided
into two main categories.

• Cold Dark Matter (CDM): The particles decoupled when they were not rel-
ativistic, so their number density distribution follows the Boltzmann distribution
n = g(mT/2π)3/2e−m/T . Particles in this category are typically drawn from the
supersymmetric theory.

2The observations of absorption lines in the spectra of distant quasars, which represent a direct measure
of the amount of neutral hydrogen along the line of sight.
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• Hot Dark Matter (HDM): In this case the particles decoupled when they were
still relativistic. They should have a number density comparable to that of the
photons. The principal candidate in this category is the massive neutrino.

The two types of particles determine well different scenarios of structure formation.
In HDM, the dark matter particles cancel small–scale structures just by free–streaming
across the small potential well. This leads to the top–down scenario, in which the largest
structures form first and the smaller ones descend for fragmentation. Instead in the CDM
scenario the smallest structures (namely the galaxies) are those which form first, becoming
the building blocks for the largest ones (bottom–up). This second scenario is favoured,
since it naturally provides a good description of the formation of large scale structures,
while the presence of HDM would not be compatible with the observed rate of formation
of structures.

A.3 The Einstein’s equations and the cosmological constant

Einstein first wrote the equations of General Relativity in 1916. They allow to relate the
space–time metric gµν with the tensor of energy–impulse Tµν , which describes the content
of the Universe:

Rµν − 1

2
gµνR = −8πG

c4
Tµν , (A.11)

where Rµν and R are the Ricci tensor and scalar, respectively.

The energy–impulse tensor of a perfect fluid is given by:

Tµν = −pgµν + (p + ρc2)UµUν , (A.12)

where p is the pressure, ρc2 is the energy density (which includes also the contribution
of the rest mass) and Uµ is the four–dimensional velocity of the fluid (normalised as
UµUµ = 1).

Only one year later, Einstein introduced in the equations a term of cosmological con-
stant Λ, in order to obtain a static Universe. In fact, this can be done with eqs. (A.11)
only by assuming ρ = −3p/c2, which is unphysical for ordinary matter. He modified the
equations in the following way:

Rµν − 1

2
gµνR − Λgµν = −8πG

c4
Tµν . (A.13)

From this modified version of the equations, with a suitable value for Λ, one can obtain
a static Universe.

It is common to modify the expression of the energy–impulse tensor, the pressure and
the density, in order to rewrite these equations in a form similar to the eqs. (A.11).

T̃µν = Tµν +
Λc4

8πG
gµν = −p̃gµν + (p̃ + ρ̃c2)UµUν (A.14)

p̃ = p − Λc4

8πG
(A.15)

ρ̃ = ρ +
Λc2

8πG
, (A.16)
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where p and ρ are the quantities relative to the perfect fluid and ρ̃ and p̃ are called effective
density and effective pressure respectively. The Einstein’s equations now become:

Rµν − 1

2
gµνR = −8πG

c4
T̃µν . (A.17)

These new equations have the same solutions of the original ones, with the only difference
that here there are p̃ e ρ̃ instead of p e ρ.

A model of static universe (with p = 0), called Einstein model, is obtained by assuming:

ΛE =
4πGρ

c2
. (A.18)

When the expansion of the Universe was discovered, the cosmological constant lost its
importance and was defined by Einstein as the biggest error of his life. However, after
the introduction of the inflationary model, it became of fundamental importance: its
contribution to the density ρΛ and to the pressure pΛ were interpreted as the density and
pressure of vacuum, i.e. of the state of minimum energy of the quantistic state.

According to the now standard cosmological scenario, the cosmological constant rep-
resents the dominant component of the density of the Universe. It is called Dark Energy,
since its origin is unknown. Its density parameter is:

ΩΛ ∼ 0.7 (A.19)

A.4 The Robertson–Walker metric

The cosmological principle proposes a spatially homogeneous and isotropic Universe. At
least in regions as large as the present Hubble volume3 these two assumptions are well
verified; the most evident proof is the isotropy of the CMB. The Robertson–Walker metric
represents the most general form in which is it possible to describe a space with these two
properties.

The matter in the Universe can be described as a continuum fluid, giving to each of its
elements three spatial coordinates xi(i = 1, 2, 3) and a time t, which represents the proper
time, as would be measured by a clock moving in the fluid itself. The spatial coordinates
are called comoving coordinates.

The quantity ds2 determines the interval (both in time and in space) between two
events having coordinates xi and xi + dxi. By assuming a generic metric tensor gµν , ds2

is given by4:
ds2 = gµν(x)dxµdxν (µ, ν = 0, 1, 2, 3). (A.20)

The metric tensor determines all the geometrical properties in the system of the coor-
dinates xµ. If the matter distribution is uniform, the space is homogeneous and isotropic:
it is then possible to choose a proper time, such that at any time the metric of the
tri–dimensional space is identical at any point and in any direction. In this case, the
space–time metric becomes:

ds2 = (cdt)2 − dl2 = (cdt)2 − g̃ijdxidxj (i, j = 1, 2, 3), (A.21)

where the tensor g̃ij is the metric tensor of the tri–dimensional space.

3The Hubble volume or sphere is defined as a region of the Universe causally connected
4Repeated indexes are summed up, following the Einstein’s convention.
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Given the properties of this metric, it is more convenient to rewrite it in polar comoving
coordinates(r, θ, φ). Its more general expression, which is called Robertson-Walker metric,
is the following:

ds2 = (cdt)2 − a2(t)

[

dr2

1 − Kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (A.22)

where a(t) is the scale factor and K is the curvature parameter of the Universe. This metric
is invariant under rotation and translation: the Universe does not have any preferred
position or direction. The scale factor has the dimensions of a length (r is dimensionless)
and for a non–flat Universe it is related to the curvature parameter by the relation RG =
a/

√
K. The curvature parameter determines the spatial curvature of the Universe:

• K = 0: flat space, Euclidean, infinite;

• K = 1: close space, spherical, having a finite volume but without borders;

• K = −1: hyperbolic space, open and infinite.

A.5 The Friedmann equations

In the Robertson–Walker metric (eq. A.22) and with this expression for the energy–
impulse tensor, the Einstein equations (eqs. A.11) give for the time–time and space–space
components, respectively:

ä = −4π

3
G

(

ρ̃ + 3
p̃

c2

)

a (A.23)

and

aä + 2ȧ2 + 2Kc2 = 4πG

(

ρ̃ − p̃

c2

)

a2, (A.24)

where the dot indicates the derivative with respect to the proper time t. The space–time
components give instead the identity 0 = 0. Finally, by eliminating ä between the eqs.
(A.23–A.24) one obtains the so–called Friedmann cosmological equations:











ä = −4π

3
G

(

ρ̃ + 3
p̃

c2

)

a

ȧ2 + Kc2 =
8π

3
Gρ̃a2.

. (A.25)

The content in matter and energy is described as a perfect fluid (eq. A.12). The density
and pressure of each component are simply related by an equation of state:

px = wρxc2, (A.26)

where px and ρxc2 are the pressure and the energy density of the x component respectively.
The parameter w depends on the nature of the fluid. For ordinary matter and radiation
it is in the so–called Zeldovich interval, i.e. 0 ≤ w ≤ 1. It is related to the adiabatic
sound speed: vs = cw1/2 (this relation also explains its superior limit). If the Universe
is dominated by dust, it has no pressure term, so w = 0. If instead radiation dominates,
then w = 1/3. Finally, the cosmological constant is characterised by a negative pressure,
with w = −1.

All models having −1/3 ≤ w ≤ 1 predict the Big Bang singularity, which corresponds
to an epoch at which the scale factor vanished.
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The redshift

The redshift is an observable quantity which has an important role in cosmology, since it
is related to the expansion of the Universe and is directly measurable.

The redshift is the shift towards lower (and then redder) wavelengths of the radiation
emitted from a source located at a cosmological distance:

z =
λ0 − λe

λe
, (A.27)

where λ0 is the observed wavelength (at present time) and λe is the emitted one. The
variation in wavelength is due to the expansion of the Universe and is related to the scale
factor a(t) by the relation:

1 + z =
a0

a
. (A.28)

The deceleration parameter

Another important quantity for cosmology is the present–time deceleration parameter q0,
which is defined as:

q0 = − ä(t)a(t)

ȧ2(t)
. (A.29)

Definitions of distance

In a space which is described by the Robertson–Walker metric the distance between two
points is not a well defined quantity. In fact, it depends on the way in which it is measured.

The proper distance between a point P , having coordinates r, θ, φ, and a point P0,
chosen as the origin of the coordinate system, is defined as the distance measured at the
time t by a chain of observers which connect P0 to P . Assuming dt = 0 and using the eq.
(A.22), one obtains:

dpr =

∫ r

0

adr′

(1 − Kr′2)1/2
= a







r per K = 0
arcsin(r) per K = 1
arcsinh(r) per K = −1

(A.30)

In the case of a flat Universe (Ωk = 0) the above integral gives:

dpr =
cz

H0(1 + z)

[

1 +
z(1 − q0)

(1 + 2q0z)1/2 + 1 + q0z

]

(A.31)

The proper distance depends on the time t; its value at present time t0 is obtained
from the relation:

dpr(t0) = a0f(r) =
a0

a
dpr(t). (A.32)

Assuming that the quantity dc = a0f(r) is the comoving radial coordinate of the point
P , one obtains:

dc =
a0

a
dpr. (A.33)

However, the proper distance is not very useful in the perspective of astronomical
observations, since it is clearly impossible to measure simultaneously all the elements
between P0 and P .
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We first consider the case in which the distance to an astronomical object, located in
at the position r, is computed by knowing its physical dimension d, which is given by:

d = a(t)r∆θ, (A.34)

where ∆θ is the angle subtended by d. The angular diameter distance is define as:

DA = ar =
D

1 + z
, (A.35)

where we have been introduced the quantity D = a0r. In this way, the relation between
∆θ and DA is equal to the one defined in an Euclidean space:

∆θ =
d

DA
. (A.36)

Finally, we consider the case of a source having luminosity L(ν1) at the frequency ν1,
from which we receive the flux F (ν0). Note that the observing frequency ν0 is different
from the emitting one ν1 because of the redshift. The source luminosity is

L(ν1) =
N(ν1)hν1

∆ν1∆t1
, (A.37)

where N(ν1) is the number of photons (with energy hν1) emitted in the band ∆ν1 and in
the interval of proper time ∆t1. The photons are instead observed at present time at the
frequency ν0 = ν1/(1 + z), in the band ∆ν0 = ∆ν1/(1 + z) and in the interval of proper
time ∆t0 = (1 + z)∆t1, while the number of photons reaching a telescope having area dA
is N(ν0) = [dA/4πD2]N(ν1). The measured flux will be:

F (ν0) =
L(ν1)

4πD2(1 + z)2
. (A.38)

By introducing the luminosity distance:

DL = (1 + z)D (A.39)

one obtains instead of eq. (A.38) a law similar to the classical one:

F (ν0) =
L(ν1)

4πD2
L

. (A.40)

The luminosity and angular diameter distance are clearly not independent, but they
are related by:

DA =
DL

(1 + z)2
. (A.41)

The Hubble law

The proper distance of a source depends on time, since it contains the scale factor a(t).
Then, it will have a radial velocity equal to the derivative of the proper distance with
respect to the time:

vr = ȧf(r) =
ȧ

a
dpr. (A.42)

This is the Hubble law (see Section A.2) and then the Hubble constant is equal to:

H(t) =
ȧ

a
. (A.43)

This constant actually depends on time, so it is often called the Hubble parameter.
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The critical density

The critical density is defined as the density of a flat Universe, in the absence of a term
of cosmological constant. By assuming K = 0 in eq. (A.25), one obtains:

ρcrit =
3H2

8πG
= 1.9 · 10−29h2g/cm3 (A.44)

This quantity represents the unit of measure of the density in cosmology. Note that it
depends on time as H2(t).

The curvature parameter

The curvature of the Universe is usually described in terms of the curvature parameter,
which is defined as (using the first of the Friedmann equations):

Ωk = 1 − Ω̃ ≡ − K

a2H2
, (A.45)

where Ω̃ accounts for all density components (matter, radiation and cosmological con-
stant).

A.5.1 The Friedmann models

Friedmann developed three classes of models, depending on the curvature of the Universe.

The flat Universe

The flat Universe is the simplest one, in which Ωk = 0. If also w = 0, this model is called
the Einstein–de Sitter model (EdS hereafter). In this case the eq. (A.25) can be easily
integrated, obtaining:

a(t) = a0

(

t

t0

)
2

3(1+3w)

, (A.46)

or

t = t0(1 + z)−
3(1+w)

2 . (A.47)

These relations show that the model predicts an infinite expansion in the future, always
feeling the effect of self–gravity.

One may find also:

H =
2

3(1 + w)t
(A.48)

and

q =
1 + 3w

2
= constant (A.49)

The density is equal to the critical one, by definition:

ρ̃ ≡ ρcrit =
3H2

8πG
=

1

6(1 + w)2πGt2
. (A.50)
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Parameter CMB only all datasets

100Ωbh
2 2.229 ± 0.073 2.186 ± 0.068

Ωmh2 0.1277+0.0080
−0.0079 0.1324+0.0042

−0.0041

H0 73.2+3.1
−3.2 70.4+1.5

−1.6

τ 0.089 ± 0.030 0.073+0.027
−0.028

ns 0.958 ± 0.016 0.947 ± 0.015
Ωm 0.241 ± 0.034 0.268 ± 0.018

σ8 0.761+0.049
−0.048 0.776+0.031

−0.032

Table A.1. Power Law ΛCDM Model Parameters and 68% Confidence Intervals from Spergel et

al., (2007). The first column represents the results obtained from the CMB data only, the second

column includes all data sets.

The open Universe

If Ωk < 0 the scale factor grows without an end, as in the case of a flat Universe. An
analytic expression can be found only for a Universe dominated by dust (w = 0), in the
parametric form:











a(θ) = a0
Ω

2(1 − Ω)
(cosh θ − 1)

t(θ) =
Ω

2H0(1 − Ω)3/2
(sinh θ − θ).

(A.51)

The closed Universe

These models have Ωk > 0. Their behaviour depends on both the amount of matter and
the value of the cosmological constant. If Λ = 0 (or if it is low enough) these model have a
unique property: it exists a time tmax at which the derivative of the scale factor vanishes,
which corresponds to the maximum expansion of the Universe. After this moment, the
scale factor starts decreasing and the Universe collapses at a time t = 2tmax, which is
called the Big Crunch. Otherwise, they expand forever as the flat and open ones.

As for the case of the open Universe, an analytic solution can be found for a Universe
dominated by dust (w = 0):











a(θ) = a0
Ω

2(1 − Ω)
(1 − cos θ)

t(θ) =
Ω

2H0(1 − Ω)3/2
(θ − sin θ).

(A.52)

A.5.2 Constraints from observations

Figure A.1 shows the principal constraints that we currently have on the content of the
Universe.

• The CMB: it represents the most tight constraint on cosmological parameters.
Fitting the power spectrum of the CMB temperature fluctuations. The most re-
cent measure of the CMB power spectrum has been performed by the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite. These observations found results
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Figure A.1. Confidence regions for ΩM and ΩΛ from a combination of different datasets (namely

the CMB, the SNIa and the galaxy clusters), from the Supernova Cosmology Project (Knop et al.,

2003).

indicate that our Universe is consistent with being flat, within rather small uncer-
tainties. The inferred curvature parameter is in fact:

Ωk = 0.01 ± 0.02. (A.53)

The inflationary paradigm provides a dynamical explanation of why the Universe is
so close to a flat one (and why this does not mean that it is flat). In fact, one can
demonstrate during the period of rapid accelerated expansion the density approaches
very rapidly the critical one. Note however that any inflationary expansion, lasting
for a finite time, is not able to change the geometry (flat, open or close) of the
Universe.

• SNIa: the SNIa are used as standard candles to probe the geometry of the Universe,
since they allow to fit the distance–redshift relation out to z∼> 3 (Knop et al., 2003).
Their intrinsic luminosity is not exactly constant, however it can be computed quite
precisely if their light curve is known, by comparing it with the observed flux, one
finally obtains their luminosity distance. The observation of these objects repre-
sent the major direct evidence for the cosmic acceleration and thus for a positive
cosmological constant.

• Galaxy clusters: this topic is discussed in detail in Section 2.4. The observation
of galaxy clusters principally give tight constrains on ΩM , with only a few percent
uncertainty.
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These three types of measurements are in remarkably good agreement in determining
ΩM and ΩΛ, as one may see from figure A.1. This leads to the definition of the so–
called ΛCDM model, which generally assumes a flat geometry, with a cold dark matter
component and a cosmological constant. Fiducial values are ΩM = 0.3 and consequently
ΩΛ = 0.7.

The CMB power spectrum is a precious source of information and provides constraints
on a large set of cosmological parameters, which are listed in the upper part of table A.1
(Spergel et al., 2007). These results are obtained by assuming a ΛCDM model and
a power–law spectrum for the primordial density fluctuations (see below). In the right
column of the same table instead the results from the CMB are combined with other sets of
observables (namely the galaxy surveys, the SNe and the small–scale CMB measurements,
see Spergel et al., 2007, for details).

A.6 The formation of cosmic structures

The large scale structures that we observe today are the result of the gravitational collapse
of tiny density fluctuations in the primordial density field. These fluctuations are now
observable in the form of anisotropies of the CMB. We first present a statistical approach
to the description of such fluctuations. Then, we describe the process of formation of
structures; first we adopt a simple linear treatment which however is accurate only until
the fluctuations are small. Then we introduce the more complex spherical collapse model
which provides a reasonable description of the whole formation process. Finally, we
describe the Press–Schechter mass function of collapsed dark matter halos, also discussing
its extensions and the cosmological applications.

A.6.1 The spectrum of density perturbations

The spectrum of density perturbations provides a statistical description of the distribution
of matter in the Universe and its evolution.

The density field can be described through the superposition of plain waves, which
have the advantage that they evolve independently while the fluctuations are still linear.
This effectively means that one represents the distribution as independent components
Fourier space. In this way, the density δ(~x) ≡ δ at the point ~x is given by:

δ(~x) =
1

(2π)3

∫

d3kδ̂(~k)e−i~k·~x, (A.54)

where δ̂ is the Fourier transform of δ(~x):

δ̂(~k) =

∫

d3xδ(~x)ei~k·~x. (A.55)

If the density field is a isotropic Gaussian random field, then its statistics is en-
tirely described by the power spectrum P (k) = 〈|δ2

k|〉. The quantity P (k)d3k returns the
contribution of the perturbations on scale k to create a generic fluctuation δ(~x) on the
configuration field, i.e. it is a measure of the fluctuation power density.

The primordial fluctuations are thought to be produced during the inflation epoch
and can be represented by a scale–free power spectrum:

P (k) ∝ kn, (A.56)
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where the exponent n is called the spectral index, which actually need not to be constant
over the entire range of wave numbers. Physical reasons limit the possible n values to
n > −3 for k → 0 and to n < −3 for k → ∞. Inflationary models predict a primordial
spectrum of nearly scale–invariant form with n ≃ 1.

The mean value of the perturbation δ(~x) is identical to zero by definition, however its
mean square value, i.e. its variance σ2, is not. It can be shown that:

σ2 = 〈|δ2(~x)|〉 =
1

(2π)3

∫

P (~k)d3k. (A.57)

It describes the amplitude of perturbations, but does not carry information about their
spatial structure: in fact it does not depend on spatial position but only on time, since
the perturbation amplitude δ evolves.

The variance σ2 might be formally infinite. Hence, it is more convenient to construct a
statistical description of the fluctuation field as a function for some scale Rf . This can be
done by convolving the density contrast with a filter or window function W (|~x′ − ~x|, Rf ):

δ(~x,Rf ) =

∫

d3x′W (|~x′ − ~x|, Rf )δ(~x′) =

=
1

(2π)3

∫

d3kŴ (kRf )δ̂(~k)e−i~k·~x, (A.58)

where Ŵ (kRf ) is the Fourier transform of W (x,Rf ). If 〈M〉 = 〈ρ〉VR is the mean mass
inside the volume VR encompassed by the window function of size Rf , the variance at
mass scale M is then given by:

σ2
M =

〈(M − 〈M〉)2〉
〈M〉 =

1

2π2

∫ ∞

0
P (k)k2Ŵ 2(kR)dk. (A.59)

The choice of the filter is very important, since it defines the way in which model
predictions and observations are compared. The simple one is a step function, which is
called the top-hat filter. It has a constant value below a given radius R and vanishes at
larger radii:

W (r) =

{

3/(4πR3) r < R
0 r > R

(A.60)

In this case the window volume is VR = (4π/3)R3. The σ value found by using this
filter with R = 8h−1 Mpc (comoving) has been historically adopted to define the power–
spectrum normalisation σ8.

Another typical example is the so–called Gaussian filter:

W (r) =
1

(2π)3/2R3
exp

(

− r2

2R2

)

, (A.61)

for which VR = (2πR2)3/2.

The transfer function

Besides gravitation, other causal processes, taking place inside the horizon, affect the
growth of perturbations; they are accounted through a Transfer Function T (k) which is
defined through the relation P (k) = P0(k) × T 2(k), where P (k) and P0(k) are the final
and original perturbation spectra respectively. The most important are:
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• Meszaros effect: the growth of density fluctuations entering the horizon before
equivalence is frozen until the equivalence is reached.

• Free streaming fluctuations are erased by free streaming of relativistic particles
(in the HDM scenario).

• Silk damping: the diffusion of photons, which then drag along the baryons in the
radiation-dominated era, has the same effect of the free streaming of HDM particles.

• Jeans mass: baryonic density fluctuations which reach this critical mass (whose
meaning is explained below) start collapsing and forming structures., while fluctua-
tions on a smaller scale are supported by pressure and behave as acoustic oscillations.

A.6.2 The linear theory of gravitational collapse

Clusters form through gravitational collapse, which is driven by dark matter. This
strongly simplifies our problem, since the dark matter, whatever it is, must behave as
a collisionless fluid, and therefore it is not affected by dissipative processes, unlike the
baryons, which are pressure supported. Since we are interested in the total mass, we can
neglect, on a first instance, the physical processes affecting only the baryons.

The linear theory of gravitational collapse has been developed by Jeans at the begin-
ning of the 1900’s. He demonstrated that small fluctuations in density δρ and velocity
δv embedded in a homogeneous and isotropic fluid can evolve in time. In particular, the
density fluctuations can grow as long as the repulsive effect of pressure is negligible with
respect to the gravitational attraction. This process is called Jeans gravitational instabil-
ity. Jeans formulated this theory with the aim of explaining the formation of stars and
planets, but it can also describe the large scale structure formation.

To describe the evolution of a collisionless fluid under its own gravity, we can use
the Eulerian equations of motion describing a perfect fluid (continuity, Euler and Poisson
equations, see Kolb & Turner, 1990):

∂ρ

∂t
+ ∇ · (ρ~v) = 0 : (A.62)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p −∇φ; (A.63)

∇2φ = 4πGρ, (A.64)

where φ is the gravitational field generated by the density field itself.
One may notice that these equations do not allow a static solution. In fact, by adopting

ρ = ρ0 and ~v = 0 in the eq. (A.63) one obtains ∇φ = 0, which in the eq. (A.64) gives
ρ = 0. However, Jeans decided to neglect this initial inconsistency and to develop its
theory, which leads to correct consequences. This assumption is called the Jeans swindle.

Following this approach, one considers the evolution of small positive density pertur-
bations ρ1 with respect to a uniform and static background with constant density ρ0, so
that one can easily linearise the system of equations:















ρ = ρ0 + ρ1

~v = ~v1

p = p0 + p1

φ = φ0 + φ1

(A.65)
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One can write the equations for the perturbed system (by considering only the first
order perturbations), which then give a differential equations describing the evolution of
the density perturbations:



















∂ρ

∂t
+ ρ0∇ · ~v1 = 0

∂~v1

∂t
+

v2
s

ρ0
∇ρ1 + ∇φ1 = 0

∇2φ1 − 4πGρ1 = 0

→ ∂2ρ1

∂t2
− v2

s∇2ρ1 = 4πGρ0ρ1. (A.66)

where vs =
√

∂p/∂ρ is the sound speed in the fluid.
Finally, one describes the density perturbation in terms if its linear components: ρ1 ∝

e−i(~k·~x−ωt). From eq. (A.66) one obtains the equation of a harmonic oscillator with
dispersion relation:

ω2 = v2
s
~k2 − 4πGρ0. (A.67)

The solution depends on the value of ω2: if it is positive, the pressure is large enough
to balance the gravity and then the perturbation is stable; if instead it is negative, the
perturbation can collapse. The critical value is given by the Jeans length scale, which
represents the minimum dimension for which the perturbation can collapse:

λJ =
2π

kJ
= vs

√

π

Gρ0
. (A.68)

The mass of a perturbation having dimension λJ is called the Jeans mass and represents
the minimum mass which leads to the growth of a density perturbation:

MJ =
π5/2

6

v3
s

√

G3ρ0

. (A.69)

The above analysis considers a static fluid. Instead, we are interested in a solution in an
expanding background. The same theory applies also a fluid in homogeneous expansion,
obtaining similar results. In this case, it is more convenient to write the eqs. (A.62–A.64)
in Lagrangian form, so that one can follow the evolution of a particular fluid element:

dρ

dt
+ ρ∇ · ~v = 0 (A.70)

d~v

dt
= −1

ρ
∇p −∇φ (A.71)

∇2φ = 4πGρ. (A.72)

The interesting variable is now defined as the overdensity δ = (ρ − ρ0)/ρ0 ≡ ρ1/ρ.
In addition, the physical coordinates ~r are transformed into the comoving ones ~x, which
is defined as ~r = a~x, assuming a0 = 1 for the sake of simplicity. In this new system of
variables, eq. (A.66) becomes:

δ̈ + 2
ȧ

a
δ̇ =

v2
s

a2
∇2δ + 4πGρ0δ, (A.73)

where the dot indicates the total derivative with respect to time and the spatial derivatives
are done with respect to ~x.



A.6. THE FORMATION OF COSMIC STRUCTURES 127

To show a specific example, let us now consider the EdS model, which has the ad-
vantage of giving simple analytic solutions. In this case, one obtains only the growing
solution:

δ ∝ a ∝ t2/3. (A.74)

Therefore, in an EdS Universe, the linear growth of a density perturbation is proportional
to the expansion factor (1+z). Extending this theory to more general cosmological models
is also possible. In general, one finds that the fastest is the expansion, the slowest is the
linear growth of perturbations. It is more convenient to describe the linear evolution of
the perturbation in terms of the linear fluctuation growth factor D(z) which contains the
dependence on the assumed cosmology (e.g. Peebles, 1993). The evolution in redshift of
a generic perturbation δ(z) will be given by

δ(z) = δi

[

D(z)

D(zi)

]

, (A.75)

where δi is the overdensity of the fluctuation at the initial redshift zi.

A.6.3 The spherical collapse

Consider a fluctuation of the density field having a spherical shape, embedded in a flat
Universe, described by the EdS model (see Section A.5.1). Following the Birkoff theorem,
this overdense sphere behaves like a closed Universe, within which the expansion law is
given by:

H2 =
8πG

3
− k

a2
, (A.76)

while the matter outside the sphere do not affect the dynamics inside it. One obtains
then:

d2R

dt2
= −GM

R2
= −4πGρ0R(1 + δ)

3
, (A.77)

where ρ0 is the mean density in the surrounding space, R and δ are the radius and the
overdensity of the sphere, respectively.

In the case of the Friedmann model for the closed Universe, described in Paragraph
A.5, the sphere expands out to a maximum radius Rmax at the time tmax and then
collapses. Owing to the geometry of the problem, the time of the collapse tc is twice the
time tmax, while the radius will obviously be zero. In this case, the sphere follows the
same evolution, until the collapse is slowed and finally stopped by the pressure support.
The system, after a few oscillations, achieve a stable configuration. This process is called
virialization, since at the end the property of the system are those given by the virial
theorem.

At the time of maximum expansion, it can be shown that the ratio between the density
of the perturbation and that of the surrounding environment is:

χ =
ρ(tmax)

ρ0(tmax)
≃ 9

16
π2 ≃ 5.55, (A.78)

The virialization generally occurs at a time tvir, which is approximately equal to the
time of the collapse of the Friedmann model tvir = tc ≃ 2tmax, within a sphere having
radius Rvir = Rmax/2. By recalling that ρ ∝ R−3 and ρ0 ∝ t−2 for the perturbation and
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Figure A.2. Points with errorbars represent the mass function of dark matter halos identified

in a dark matter simulation (Springel et al., 2005) at different redshifts. Solid and dotted curves

represent two model mass functions by Press & Schechter (1974) and by Jenkins et al. (2001)

respectively.

for the background densities respectively, one can now easily compute the overdensity of
the perturbation at the virialization time:

∆v =
ρ(tvir)

ρ0(tvir)
=

8ρ(tmax)

(1/4)ρ0(tmax)
= 32χ = 18π2 ≃ 178, (A.79)

The spherical collapse theory can be extended to other Friedmann models (also with
the presence of the cosmological constant), obtaining different values for the overdensity
at the virialization (e.g. Eke et al., 1996). In the case of the currently favoured ΛCDM
model (ΩM = 0.3, ΩΛ = 0.7), one obtains ∆v ≃ 100.

If extrapolated according to linear theory, it can be shown that the critical overdensity
at virialization in a EdS model is δsc = 1.686, with slightly different values for more
favoured cosmological models (e.g. Kitayama & Suto, 1997).

Finally, in both observations and simulations of galaxy clusters, it is common practice
to define a typical radius R∆ by requiring that the mean density inside it corresponds
to a given overdensity ∆. All the other quantities (mass M∆, temperature T∆, entropy
S∆, etc.) are then computed within such radius. The quantity ∆v (computed for the
appropriate cosmology) is naturally used to identify the virialized region. Other ∆ values
commonly adopted in X–ray observations are 200, 500 and 2500; the first identifies a very
large portion of the cluster generally accessible only with low–background long exposures
of nearby clusters, the second represents a typical limiting radius for cluster studies, while
the third corresponds to the core regions of the cluster.

A.6.4 The mass function of dark matter halos

Press & Schechter (1974) (PS hereafter) computed the expected mass distribution of
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virialized dark matter halos. Their basic assumptions are that the formation process can
be described by the spherical collapse model and that the primordial density fluctuations
are Gaussian:

P (δ)dδ =
1

(2πσ2)1/2
exp

(

− δ2

2σ2

)

dδ. (A.80)

In this density field, the expected fraction of points which are surrounded by such a sphere
identifies the fraction of fluid elements which are destined to be part of a collapsed halo
of mass exceeding the value M = 4π/3(aR)3ρ0, where ρ0 is the mean density:

F (R, z) =

∫ ∞

δc

P (δ)dδ =
1√

2πD(z)σR,0

exp

(

− δ2
sc

2D2(z)σ2
R,0

)

. (A.81)

However, by integrating the above formula one obtains that only one half of the points
are part of a lump at any mass. This is due to the fact that the PS derivation neglects
the possibility that a region, that is underdense when smoothed on the scale M1, can
be overdense on a larger scale M2 > M1, thus missing a factor 2 in the equations. The
predicted mass distribution function is

n(M)dM = −2
ρ

M

∂F

∂R

dR

dM
dM =

ρ

M
f(ν)

dν

dM
dM (A.82)

with

f(ν) =
1√
2π

exp(−ν2/2) (A.83)

The function f depends only on the variable ν = δcrit/σM and is normalised so that
∫

f(ν)dν = 1. The quantity δcrit(z) is the linear-theory overdensity extrapolated to the
present time for a uniform spherical fluctuation collapsing at redshift z: δcrit = [δsc/D(z)].

An extension of the PS approach has been proposed by Sheth & Tormen (1999) (ST
hereafter), who adopted the excursion-set approach of Bond et al. (1991) and introduced
the collapse of elliptical rather than spherical perturbations. In this case, the time of the
collapse depends not only on the overdensity, but also on the shape of the perturbation.
They showed that the virialization occurs earlier for less elliptical clusters and, at a
given ellipticity, earlier of less prolate objects. With respect to an approach based on
the spherical model, now the less massive objects need a larger overdensity to collapse,
while the more massive ones are still well described by the spherical model. With this
assumptions, they proposed a new mass distribution for the dark matter halos:

f(ν) = A

(

1 +
1

(aν2)q

)(

2a

π

)1/2

exp

(

−aν2

2

)

, (A.84)

where a = 0.707, q = 0.3 and A ≃ 0.322 for the normalisation. The above equation
reduces to the PS expression for a = 1 , A = 1/2, and q = 0.

In addition to theoretical modelling, some empirical fitting formulae for the mass func-
tion were proposed on the basis of N–body simulations. For example, Jenkins et al. (2001)
(JMF hereafter) analysed a set of simulations having different cosmological parameters
and mass resolution and found a unique fitting formula which is able to satisfactory de-
scribe all of them. They found convenient to use the quantity ln σ−1(M,z) as the mass
variable instead of M . The mass function is now described in terms of:

f(σ, z) =
M

ρ
n(M,z)

dM

d ln σ−1
(A.85)
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where σ2(M,z) is the variance of the linear density field, extrapolated to the redshift z at
which aloes are identified, after smoothing with a spherical top-hat filter which encloses
mass M in the mean. The use of this new variable “factors out” most of the difference
in the mass functions between different epochs, cosmologies and power spectra, and so
allows a wider comparison among different simulations.

f(M) = 0.315e−|ln(σ−1)+0.61|3.8

, (A.86)

This function is actually very close to the ST one with a = 0.75. The main difference
between these two formulations is that the ST one predicts more objects at the high mass
tail.

Springel et al. (2005) carried out a comparison of the PS and JMF mass functions
with a large cosmological simulation which contains only dark matter. Figure A.2 shows
a comparison between the mass function found in the simulation and the PS and JMF
predictions. Their results show that the JMF function provides a good match with their
simulation data, while the PS one underpredicts the high–mass end by up to an order of
magnitude. Another comparison by Warren et al. (2006) using another set of simulations
leads to similar results.
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