Cosmology II (9 CFU)

A.Y. 2011/2012

Stefano Borgani (Borgani@oats.inaf.it)

 

  1. INTRODUCTION TO THE COURSE
  2. OBSERVATIONAL FACTS
  3. BACKGROUND OF COSMOLOGY

3.1  FRW metric

3.2  Relativistic cosmology

3.3  Inflation

  1. COSMOLOGICAL PERTURBATIONS

4.1  Newtonian theory of linear perturbations

4.2  Zeldovich approximation

4.3  Adhesion approximation

4.4  Relativistic theory

4.5  Transfer functions

4.6  Statistical properties

4.7  Origin of cosmological perturbations

  1. GRAVITATIONAL COLLAPSE AND COLLISIONLESS DYNAMICS

5.1  Spherical collapse

5.2  Similarity solution of spherical collapse

5.3  Collapse of homogeneous ellipsoid

5.4  Collisionless dynamics

5.5  Collisionless relaxation

5.6  Gravitational collapse of cosmic density field

5.7  Methods for N-body simulations

  1. PROBING THE COSMIC DENSITY FIELD

6.1  Large-scale mass distribution

6.2  Large-scale velocity field

6.3  Clustering in real and redshift space

6.4  Clustering evolution

6.5  Galaxy clustering

  1. GRAVITATIONAL LENSING

7.1  Lensing from point-like objects

7.2  Lensing from galaxies

7.3  Lensing from galaxy clusters and from the large-scale structure of the Universe

  1. COSMIC MICROWAVE BACKGROUND

8.1  Brief thermal history

8.2  Temperature anisotropy from recombination

8.3  Polarization anisotropy from recombination

  1. FORMATION AND STRUCTURE OF DM HALOS

9.1  Density peaks

9.2  Halo mass function

9.3  Progenitor distribution and merger trees

9.4  Spatial clustering and bias

9.5  Internal structure of DM halos

9.6  The halo model of DM clustering

  1. FORMATION AND EVOLUTION OF GASEOUS HALOS

10.1        Bremsstrahlung

10.2        Compton scattering

10.3        Basic fluid dynamics

10.4        Hydrostatic equilibrium

10.5        The formation of hot gaseous halos

10.6        Radiative cooling in gaseous halos

10.7        Thermal and hydrodynamical instabilities of cooling gas

10.8        Evolution of gaseous halos with energy sources

10.9        Hydrodynamic simulations

  1. CLUSTERS OF GALAXIES

            11.1 Properties of the ICM from the thermal X-ray emission

            11.2 Studies of galaxy clusters with the Sunyaev-Zeldovich effect

            11.3 Galaxy clusters as cosmological probes

                    11.3.1 Baryon fraction

                    11.3.2 Mass function and clustering of galaxy clusters

 

 

TEXTBOOKS AND REFERENCES:

 

1. H. Mo, F. van den Bosch & S.D.M. White: Galaxy Formation and Evolution, 

    Cambridge University Press, 2010

2. R. Narayan & M. Bartelmann: Gravitational lensing (Eds. A. Dekel and J.P. Ostriker.

    Cambridge : Cambridge University Press, 1999., p.360, astro-ph/9606001)

3. S.D.M. White: Formation and evolution of galaxies, Lectures at the Les  

    HouchesSummer School, astro-ph/9410093

4. M. Birkinshaw, The Sunyaev-Zeldovich Effect, 1998, Physics Reports,  astro-  

     ph/9808030

5. J. Binney & S. Tremaine: Galactic Dynamics, 1987, Princeton University Press

6. G.B. Rybicki & A.P. Lightman, Radiative processes in astrophysics, 1979, A Wiley-

    Interscience Publ.

7. W. Hu: Lecture Notes on CMB Theory, arXiv:0802.3688